No CrossRef data available.
Published online by Cambridge University Press: 11 June 2013
Surface modification was performed on the indium-tin-oxide (ITO) thin films by oxygen inductive coupling plasma (O-ICP) and oxygen plasma immersion ion implantation (O-PIII). The electronic states of ITO surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The observed peak shifts of O 1s, In 3d5/2 and Sn d5/2 core levels showed that the work function of ITO can be further enhanced by O-PIII treatment, compared with that of untreated and O-ICP treated surfaces. The deconvolution of O 1s spectrum and calculation of stoichiometry showed that the work function improvement should be attributed to the increase of effective oxygen content, namely, the elimination of oxygen vacancies. In addition, the measurement of Kelvin probe confirmed that an increment of the ITO work function by 1.1 eV was obtained on O-PIII treated sample and the results sustained our proposal.