Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T10:03:29.176Z Has data issue: false hasContentIssue false

A water-based molecular flip-flop

Published online by Cambridge University Press:  12 December 2014

Yu Wang*
Affiliation:
Department of Physics, Zhejiang Agriculture and Forestry University, Hangzhou, Linan 311300, P.R. China Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Agriculture and Forestry University, Hangzhou, Linan 311300, P.R. China
Jiping Huang*
Affiliation:
Department of Physics, Fudan University, Shanghai 200433, P.R. China
Get access

Abstract

The flip-flop, which has been widely used in digital circuits, has two stable states and can be used to store state information. Because traditional flip-flops based on digital circuits suffer from a barrier to higher performance, it is necessary to explore some new alternative devices. For this purpose, we utilize molecular dynamics simulations to design a molecular flip-flop, which contains one water molecule confined within a single-walled carbon nanotube. Its two states can be switched within 0.5 ps (2000 GHz), and its state information can be exported by the charged atomic-force microscope force probes. The mechanism of the flip-flop depends on the behavior of a water molecule in a nonuniform electric field. In particular, a water molecule always moves toward the location of lowest electric energy in a nonuniform electric field generated by point charges. The resulting flip-flop could be utilized for designing nanoscale devices.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mano, M.M., Kime, C.R., Logic and Computer Design Fundamentals (Pearsone education international, New Jersey, 2004)Google Scholar
Thorsen, T., Maerkl, S.J., Quake, S.R., Science 298, 580 (2002)CrossRef
Prakash, M., Gershenfeld, N., Science 315, 832 (2007)CrossRef
Toepke, M.W., Abhyankar, V.V., Beebe, D.J., Lab Chip 7, 1449 (2007)CrossRef
Craighead, H., Nature 442, 387 (2006)CrossRef
Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., Weigl, B.H., Nature 442, 412 (2006)CrossRef
Do, J., Ahn, C.H., Lab Chip 8, 542 (2008)CrossRef
Zhao, X.X., Gao, Y., Huang, J.P., J. Appl. Phys. 105, 064510 (2009)CrossRef
Kemp, D.D., Gordon, M.S., J. Phys. Chem. A 112, 4885 (2008)CrossRef
Hummer, G., Rasaiah, J.C., Noworyta, J.P., Nature 414, 188 (2001)CrossRef
Akiyama, K., Eguchi, T., An, T., Fujikawa, Y., Yamada-Takamura, Y., Sakurai, T., Hasegawaa, Y., Rev. Sci. Instrum. 76, 033705 (2005)CrossRef
Agronin, A., Rosenwaks, Y., Rosenman, G., Appl. Phys. Lett. 85, 452 (2004)CrossRef
Kim, D.H., Koo, J.Y., Kim, J.J., Eur. Phys. J. Appl. Phys. 28, 301 (2004)CrossRef
Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C., Nature 412, 802 (2001)CrossRef
Li, J.Y., Gong, X.J., Lu, H.J., Li, D., Fang, H.P., Zhou, R.H., Proc. Natl. Acad. Sci. USA 104, 3687 (2007)CrossRef
Wang, B., Král, P., Phys. Rev. Lett. 98, 266102 (2007)CrossRef
Tu, Y.S., Xiu, P., Wan, R.Z., Hu, J., Zhou, R.H., Fang, H.P., Proc. Natl. Acad. Sci. USA 106, 18120 (2009)CrossRef
Xiu, P., Zhou, B., Qi, W.P., Lu, H.J., Tu, Y.S., Fang, H.P., J. Am. Chem. Soc. 131, 2840 (2009)CrossRef
Wang, Y., Zhao, Y.J., Huang, J.P., J. Phys. Chem. B 115, 13275 (2011)CrossRef
Meng, X.W., Wang, Y., Zhao, Y.J., Huang, J.P., J. Phys. Chem. B 115, 4768 (2011)CrossRef
Rinne, K.F., Gekle, S., Bonthuis, D.J., Netz, R.R., Nano. Lett. 12, 1780 (2012)CrossRef
Meng, X.W., Huang, J.P., Phys. Rev. E 88, 014104 (2013)CrossRef
Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chem. Rev. 106, 1105 (2006)CrossRef
Yaya, A., Ewels, C.P., Wagner, Ph., Suarez-Martinez, I., Gebramariam Tekley, A., Rosgaard Jensen, L., Eur. Phys. J. Appl. Phys. 54, 10401 (2011)CrossRef
Grubmüller, H., Heymann, B., Tavan, P., Science 271, 997 (1996)CrossRef
Marszalek, P.E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., Fernandez, J.M., Nature 402, 100 (1999)
Xu, Y., Shen, J., Luo, X., Silman, I., Sussman, J.L., Chen, K., Jiang, H., J. Am. Chem. Soc. 125, 11340 (2003)CrossRef
Wang, Y., Zhang, L.X., J. Polym. Sci. Polym. Phys. 45, 2322 (2007)CrossRef
Bussi, G., Donadio, D., Parrinello, M., J. Chem. Phys. 126, 014101 (2007)CrossRef
Hess, B., Kutzner, C., Van De Spoel, D., Lindahl, E., J. Chem. Theory. Comp. 4, 435 (2008)CrossRef
Agrawal, P.M., Rice, B.M., Thompson, D.L., Surf. Sci. 515, 21 (2002)CrossRef
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., J. Chem. Phys. 79, 926 (1983)CrossRef
Wilson, N.R., Macpherson, J.V., Nat. Nanotechnol. 4, 483 (2009)CrossRef
Chen, L., Cheung, C.L., Ashby, P.D., Lieber, C.M., Nano. Lett. 4, 1725 (2004)CrossRef
Hafner, J.H., Cheung, C., Oosterkamp, T.H., Lieber, C.M., J. Phys. Chem. B 105, 743 (2001)CrossRef
Cheung, C.L., Hafner, J.H., Lieber, C.M., Proc. Natl. Acad. Sci. USA 97, 3809 (2000)CrossRef
Penner, R.M., Heben, M.J., Longin, T.L., Lewis, N.S., Science 250, 1118 (1990)CrossRef
Arrigan, D.W.M., Analyst 129, 1157 (2004)CrossRef
Li, C., Thostenson, E.T., Chou, T.W., Compos. Sci. Technol. 68, 1227 (2008)CrossRef
Bonard, J.M., Croci, M., Klinke, C., Kurt, R., Noury, O., Weiss, N., Carbon 40, 1715 (2002)CrossRef
Heller, I., Kong, J., Heering, H.A., Williams, K.A., Lemay, S.G., Dekker, C., Nano. Lett. 5, 137 (2005)CrossRef
Adleman, L.M., Science 266, 1021 (1994)CrossRef
Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E., Nature 429, 423 (2004)CrossRef
Park, K.S., Jung, C., Park, H.G., Angew. Chem. Int. Ed. 49, 9757 (2010)CrossRef