Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T18:02:45.818Z Has data issue: false hasContentIssue false

Variations of surface roughness for depositionof Co-sputtered-ZnO(002) by Auger electron spectroscopyand surface magneto-optic Faraday effect

Published online by Cambridge University Press:  28 January 2011

Y.-C. Chang
Affiliation:
Department of Electrophysics, National Chiayi University, 60004 Chiayi, Taiwan
C.-W. Su*
Affiliation:
Department of Electrophysics, National Chiayi University, 60004 Chiayi, Taiwan
S.-C. Chang
Affiliation:
Department of Electrophysics, National Chiayi University, 60004 Chiayi, Taiwan
Y.-H. Lee
Affiliation:
Department of Physics, National Cheng Kung University, 1 University Rd., 70101 Tainan, Taiwan
Get access

Abstract

Auger electron spectroscopy and the surfacemagneto-optical Faraday effect were used to monitor the depositionof Co ultrathin films on an initially rough ZnO(002) crystalsurface. The magnetic properties of the epitaxial films werecompared with those associated with that the structure properties ina 3D island growth mode. The magneto-optic signals are verysensitive to the thickness of the Co film structure, even if it isrough. The ZnO(002) substrate surface formed by routine ionsputtering may exhibit short-range ordering in the initial samplepreparation. The roughness of a sputtered substrate surface can bedetermined from the sensitive magneto-optical signals, especiallywhen ultrathin films are deposited in the initial stage of growth.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shern, C.S., Tsay, J.S., Her, H.Y., Wu, Y.E., Chen, R.H., Surf. Sci. 429, 497 (1999) CrossRef
Wu, Y.E., Su, C.W., Shern, C.S., Lin, M.T., Chin. J. Phys. 39, 182 (2001)
McGee, N.W.E., Johnson, M.T., de Vries, J.J., J. aan de Stegge, J. Appl. Phys. 73, 3418 (1992) CrossRef
C.W. Su, J.S. Tsay, C.H. Hwang, Y.D. Yao, J. Appl. Phys. 97, 10J111 (2005)
Tsay, J.S., Tao, Y.D., Wang, K.C., Gheng, W.C., Yang, C.S., Surf. Sci. 507–510, 498 (2002) CrossRef
Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S.Y., Koinuma, H., Science 291, 584 (2001) CrossRef
Soo, Y.L., Kioseoglou, G., Kim, S., Kao, Y.H., Devi, P.S., Parise, J., Gambino, R.J., Gouma, P.I., Appl. Phys. Lett. 81, 655 (2002) CrossRef
Wang, C.M., Shutthanandan, V., Thevuthasan, S., Droubay, T., Chambers, S.A., J. Appl. Phys. 97, 073502 (2005) CrossRef
Akdogan, N., Nefedov, A., Westphalen, A., Zabel, H., Khaibullin, R.I., Tagirov, L.R., Superlatt. Microstruct. 41, 132 (2007) CrossRef
J.M. Liu, Photonics Devices (Cambridge University Press, Cambridge, 2005), p. 299
C.J. Powell, A. Jablonski, NIST Electron Inelastic-Mean-Free-Path Database Version 1.1 (National Institute of Standards and Technology, Gaithersburg, MD, 2000)
Su, C.W., Ho, H.Y., Shern, C.S., Chen, R.H., Thin Solid Films 425, 139 (2002) CrossRef