Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T22:50:16.972Z Has data issue: false hasContentIssue false

The use of neighbourhood intensity comparisons, morphological gradients and Fourier analysis for automated precipitate counting & Pendellösung fringe analysis in X-ray topography

Published online by Cambridge University Press:  15 July 2004

G. Murphy
Affiliation:
Vision Systems Group, Research Institute for Networks & Communications Engineering (RINCE), Dublin City University, Dublin 9, Ireland
P. F. Whelan
Affiliation:
Vision Systems Group, Research Institute for Networks & Communications Engineering (RINCE), Dublin City University, Dublin 9, Ireland
P. J. McNally*
Affiliation:
Microelectronics Group, RINCE, Dublin City University, Dublin 9, Ireland
T. Tuomi
Affiliation:
Optoelectronics Laboratory, Helsinki University of Technology, PO Box 3500, 02015 TKK, Espoo, Finland
R. Simon
Affiliation:
Institute für Synchrotronstrahlung (ISS), Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe, Germany
Get access

Abstract

Crystal distortions modify the propagation of X-rays in single crystal materials, and X-ray topography can be used to record these modifications on a film thus providing images of the distributions and nature of defects, dislocations, strains, precipitates, etc. in semiconductors. Small variations of contrast, which often need to be analysed can be rendered invisible. Furthermore, artefacts in the films must be removed. This study examines the use of advanced image analysis techniques applied to a selection of X-ray topographs in section transmission mode: (i) the automated counting of oxygen-related precipitates and (ii) the enhancement of Pendellösung fringes. The technique also succeeds in removing unwanted features in the original x-ray topographs such as vertical streaking due to collimating slit phase contrast and strain features near the surface due to the presence of integrated circuit process strains.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. R. Lang, Diffraction and Imaging Techniques in Material Science, edited by S. Amelinckx, R. Gevers, J. Van Landuyt (Amsterdam: North-Holland, 1978), p. 623
Tuomi, T. T, K. Naukkarinen, P. Rabe, Phys. Stat. Sol. A 25, 93 (1974) CrossRef
A. Authier, Diffraction and Imaging Techniques in Material Science, edited by S. Amelinckx, R. Gevers, J. Van Landuyt (Amsterdam: North-Holland, 1978), p. 715
Pilyard, M., Epelboin, Y., Soyer, A., J. Appl. Cryst. 28, 279 (1995) CrossRef
McNally, P. J., Curley, J. W., Bolt, M., Reader, A., Tuomi, T., Rantamäki, R., Danilewsky, A. N., DeWolf, I., J. Mater. Sci.: Mater. Electron. 10, 351 (1999)
Tuomi, T., Tuominen, M., Prieur, E., Partanen, J., Lahtinen, J., Laakkonen, J., J. Electrochem. Soc. 142, 1699 (1995) CrossRef
P. F. Whelan, D. Molloy, Machine Vision Algorithms in Java, Techniques and Implementation (Springer-Verlag, 2001)
P. Soille, Morphological Image Analysis: Principles and Applications (Springer-Verlag, 1999)
J. C. Russ, The image processing handbook (CRC Press, 1992)
Vincent, L., IEEE Trans. Image Proc. 2, 176 (1993) CrossRef
Ming, L., Mai, Z. H., Cui, S. F., Acta Cryst. A50, 725 (1994)
S. Beucher, F. Meyer, Image Processing, edited by Dougherty (Marcel Dekker Inc., 1993), pp. 433–483
McNally, P. J., Danilewsky, A. N., Curley, J. W., Reader, A., Rantamäki, R., Tuomi, T., Bolt, M., Taskinen, M., Microelectron. Eng. 45, 47 (1999) CrossRef
Meieran, E. S., Blech, I. L., J. Appl. Phys. 36, 3162 (1965) CrossRef
Epelboin, Y., J. Appl. Phys. 64, 109 (1988) CrossRef
D. K. Bowen, B. K. Tanner, High Resolution X-Ray Diffractometry and Topography (Taylor & Francis, London, UK, 1998)
Partanen, J., Tuomi, T., J. X-Ray Sci. Technol. 2, 165 (1990) CrossRef