Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T10:58:55.204Z Has data issue: false hasContentIssue false

Unusual longitudinal relaxation time behaviour of colloidal solutions of superparamagnetic nanoparticles

Published online by Cambridge University Press:  13 December 2007

A. Carvalho*
Affiliation:
Centro de Física da Matéria Condensada, Av. Prof. Gama Pinto 2, 1699-003 Lisboa, Portugal Escola Superior de Tecnologia da Saúde de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
A. Taborda
Affiliation:
Centro de Física da Matéria Condensada, Av. Prof. Gama Pinto 2, 1699-003 Lisboa, Portugal
Get access

Abstract

Superparamagnetic nanoparticles are very interesting objects having many applications among which MRI contrast agents are one of the more important. In this work the longitudinal relaxation times of Endorem and Lumirem, two colloidal solutions of iron oxide nanoparticles used as contrast agents for magnetic resonance imaging were measured at magnetic field intensities similar to the ones used in MRI. T 1 was seen to depend on nanoparticle concentrations as expected but, for the Lumirem, also on the time spend by the sample under the influence of the static magnetic field. The T 1 evolution was measured for colloidal solutions both different concentrations and different viscosities. The strange T 1 dependence is presented and discussed relating to the nanoparticles superparamagnetic properties. It is shown that one of the possible reasons for the fact is the formation of local field enhanced linear arrays of SPIO.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berry, C.C., Curtis, A.S.G., J. Phys. D 36, R198 (2003) CrossRef
Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J., J. Phys. D 36, R167 (2003) CrossRef
Yi-Xiang, S.M. Hussain, G.P. Krestin, Eur. Radiol. 11 (2001)
Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., von Rechenberg, B., J. Magn. Magn. Mater. 393, 483 (2005) CrossRef
Bjornerud, A., Johansson, L., NMR Biomed. 17, 465 (2004) CrossRef
The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, edited by E.A.E.M.E. Toth (Wiley, 2001)
Bean, C.P., Livingston, J.D., J. Appl. Phys. 30, 120S (1959) CrossRef
Dormann, J.L., Rev. Phys. Appl. 16, 275 (1981) CrossRef
Jung, C.W., Jacobs, P., Magn. Res. Imag. 13, 661 (1995) CrossRef
Kellar, K.E., Fuji, D.K., Briley-Saebo, W.H.H.G.K., Bjornerod, A., Spiller, M., Koenig, S.H., Acad. Radiol. 9, S34 (2002) CrossRef
Koenig, S.H., Kellar, K.E., Fujii, D.K., Gunther, W.H.H., Briley-Saebo, K., Spiller, M., Acad. Radiol. 9, S5 (2002) CrossRef
Bulte, J.W.M., Brooks, R.A., Moskowitz, B.M., Jr, L.H.B.., J.A. Frank, J. Magn. Magn. Mater. 194, 217 (1999) CrossRef
Kellar, K.E., Fujii, D.K., Gunther, W.H., Briley-Saebo, K., Bjornerud, A., Spiller, M., Koening, S.H., J. Magn. Reson. Imaging 11, 488 (2000) 3.0.CO;2-V>CrossRef
Roch, A., Gossuin, Y., Muller, R.N., Gillis, P., J. Magn. Magn. Mater. 293, 532 (2005) CrossRef
T.C. Farrar, E.D. Becker, Pulse and Fourier Transform NMR: Introdution to Theory and Methods (Academic Press, 1971)
A. Abragam, Principles of Nuclear Magnetism (Oxford Science Publications, 1994)
Jung, C.W., Jacobs, P., Magn. Res. Im. 13, 661 (1995) CrossRef
Blanco-Mantecon, M., Grady, K.O., J. Magn. Magn. Mater. 296, 124 (2006) CrossRef
Kalambur, V.S., Han, B., Hammer, B.E., Shield, T.W., Bischof, J.C., Nanotechnology 16, 1221 (2005) CrossRef
Holligan, D.L., Gillis, G.T., Dailey, J.P., Nanotechnology 14, 661 (2003) CrossRef
Teixeira, P., Tavares, J.M., da Gama, M.T., J. Phys.: Condens. Matter 12, R411 (2000)
Yavuz, C.T., Mayo, J., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M. et al., Science 314, 964 (2006) CrossRef