Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:30:50.905Z Has data issue: false hasContentIssue false

Ultra high barrier materials for encapsulation of flexible organic electronics

Published online by Cambridge University Press:  02 September 2010

S. Logothetidis*
Affiliation:
Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, 54124 Thessaloniki, Greece
A. Laskarakis
Affiliation:
Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, 54124 Thessaloniki, Greece
D. Georgiou
Affiliation:
Aristotle University of Thessaloniki, Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, 54124 Thessaloniki, Greece
S. Amberg-Schwab
Affiliation:
Fraunhofer-Institut für Silicatforschung (ISC), 97082 Würzburg, Germany
U. Weber
Affiliation:
Fraunhofer-Institut für Silicatforschung (ISC), 97082 Würzburg, Germany
K. Noller
Affiliation:
Fraunhofer-Institut für Verfahrenstechnik und Verpackung (IVV), Freising, Germany
M. Schmidt
Affiliation:
Fraunhofer-Institut für Verfahrenstechnik und Verpackung (IVV), Freising, Germany
E. Küçükpinar-Niarchos
Affiliation:
Fraunhofer-Institut für Verfahrenstechnik und Verpackung (IVV), Freising, Germany
W. Lohwasser
Affiliation:
Alcan Technology & Management AG, Neuhausen, Switzerland
Get access

Abstract

The encapsulation of the active layers (organic semiconductors, electrodes, transparent conductive oxides, etc.) of organic electronic devices developed onto flexible polymeric substrates is one of the most challenging issues in the rapidly emerging area of organic electronics. The importance for the protection of the active layers arises from the fact that these are very sensitive when they are subjected to the atmosphere, since the permeation of the atmosphere's water vapour (H2O) and oxygen (O $_{2})$ gases induces corrosion effects, film delamination and finally, failure of the organic electronic device. In addition, the encapsulation layers contribute to the long-term stability of the whole device enabling its use in outdoor environments (e.g. in the case of flexible photovoltaic cells-OPVs). A promising approach for the encapsulation of flexible organic electronics includes the development of multilayers that consist of hybrid polymer materials and inorganic layers onto flexible polymeric substrates, such as poly(ethylene terephthalate) (PET). This approach leads to a significant improvement of the barrier performance of the whole structure, due to the synergetic effect of the confinement of the permeation to the defect zones of the inorganic layer, and the formation of chemical bonds between the hybrid polymer and the inorganic layer. The knowledge of their optical properties and their correlation with their barrier performance are of major importance since it will contribute towards the optimization of their functionality. In this work, we provide an overview on the results concerning the use of hybrid polymers as ultra high barrier materials and moreover we discuss on the effect of inclusion of SiO2 nano-particles on their optical properties and barrier performance.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dennler, G., Neugebauer, L.C.H., Sariciftci, N., Labouret, A., J. Mater. Res. 20, 3224 (2005) CrossRef
Logothetidis, S., Laskarakis, A., Eur. Phys. J. Appl. Phys. 46, 12502 (2009) CrossRef
Logothetidis, S., Rev. Adv. Mater. Sci. 10, 387 (2005)
Dennler, G., Lungenschmied, C., Neugebauer, H., Sariciftci, N., LatreÌche, M., Czeremuszkin, G., Wertheimer, M., Thin Solid Films 511-512, 349 (2006) CrossRef
Yanaka, M., Henry, B., Roberts, A., Grovenor, C., Briggs, G., Sutton, A., Miyamoto, T., Tsukahara, Y., Takeda, N., Chater, R., Thin Solid Films 397, 176 (2001) CrossRef
Roberts, P., Henry, M., Sutton, P., Grovenor, M., Briggs, D., Miyamoto, T., Kano, M., Yanaka, M., J. Membr. Sci. 208, 75 (2002) CrossRef
Georgiou, D., Laskarakis, A., Logothetidis, S., Amberg-Schwab, S., Weber, U., Schmidt, M., Noller, K., Appl. Surf. Sci. 255, 8023 (2009) CrossRef
Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, U., Frohlich, L., Buestrich, R., Popall, M., Streppel, U., Dannberg, P., Wachter, C., Brauer, A., Thin Solid Films 442, 194 (2003) CrossRef
Charton, C., Schiller, N., Fahland, M., Holländer, A., Wedel, A., Noller, K., Thin Solid Films 502, 99 (2006) CrossRef
Amberg-Schwab, S., Katschorek, H., Weber, U., Hoffmann, M., Burger, A., J. Sol-Gel Sci. Technol. 19, 125 (2000) CrossRef
Amberg-Schwab, S., Weber, U., Burger, A., Nique, S., Xalter, R., Monatsh. Chem. 137, 657 (2006) CrossRef
Hedenqvist, S., Johansson, S., Surf. Coat. Technol. 172, 7 (2003) CrossRef
Haas, K., Amberg-Schwab, S., Rose, K., Schottner, G., Surf. Coat. Technol. 111, 72 (1999) CrossRef
Haas, K., Wolter, H., Curr. Opin. Solid State Mater. Sci. 4, 571 (2000) CrossRef
Laskarakis, A., Georgiou, D., Logothetidis, S., Amberg-Schwab, S., Weber, U., Mater. Chem. Phys. 115, 269 (2009) CrossRef
Laskarakis, A., Logothetidis, S., J. Appl. Phys. 101, 053503 (2007) CrossRef
R. Azzam, N. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)
H. Tompkins, E. Irene, Handbook of Ellipsometry (William Andrew Publishing, Norwich, NY, 2005)
Jellison, G., Modine, F., Appl. Phys. Lett. 69, 371 (1996) CrossRef