Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T17:20:12.339Z Has data issue: false hasContentIssue false

Thermal studies of a superconducting current limiter using Monte-Carlo method

Published online by Cambridge University Press:  15 July 1999

J. Lévêque*
Affiliation:
Groupe de Recherche en Électrotechnique et Électronique de Nancy, Université Henri Poincaré, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
A. Rezzoug
Affiliation:
Groupe de Recherche en Électrotechnique et Électronique de Nancy, Université Henri Poincaré, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
Get access

Abstract

Considering the increase of the fault current level in electrical network, the current limiters become very interesting. The superconducting limiters are based on the quasi-instantaneous intrinsic transition from superconducting state to normal resistive one. Without detection of default or given order, they reduce the constraints supported by electrical installations above the fault. To avoid the destruction of the superconducting coil, the temperature must not exceed a certain value. Therefore the design of a superconducting coil needs the simultaneous resolution of an electrical equation and a thermal one. This papers deals with a resolution of this coupled problem by the method of Monte-Carlo. This method allows us to calculate the evolution of the resistance of the coil as well as the current of limitation. Experimental results are compared with theoretical ones.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Slade, P.G., Wu, J.L., Stacey, E.J., Stubler, W.F., Voshall, R.E., Bonk, J.J., Porter, J., Hong, L., IEEE Trans. Pow. Deliv. 7, 507 (1992). CrossRef
Salasoo, L., Imece, A.F., Delmerico, R.W., Wyatt, R.D., IEEE Trans. AS 5, 1079 (1995).
Tixador, P., Lévêque, J., Brunet, Y., Pham, V.D., IEE Proc. Gener. Transm. Distrib. 141, 117 (1994). CrossRef
Verhaege, T., Cottevieille, C., Estop, P., Therond, P.G., Therond, P., Laumond, Y., Bekhaled, M., Bonnet, P., IEEE Trans. AS 5, 1063 (1995).
Yazawa, T., Tasaki, K., Tosaka, T., Kurusu, T., Nomura, S., Maeda, H., Okhuma, T., Nakade, M., Hara, T., IEEE Trans. Mag. 32, 2399 (1996). CrossRef
Katutani, S., Proc. Imp. Acad. Jpn 20, 706 (1944). CrossRef
Verhaege, T., Agnoux, C., Tavergnier, J.P., Lacaze, A., Collet, M., IEEE Trans. Mag. 28, 751 (1992). CrossRef
E.S. Yoneda, D. Ito, Proc. MT11, 2, 1096 (1989).
Pukhov, A.A., Rakhmanov, A.L., Vysotsky, V.S., Tsikhon, V.N., IEEE Trans. AS. 5, 560 (1996).
L. Dresner, Stability of superconductors (Plenum Press, 1995).
Alcatel Alsthom Recherche, 91460 Marcoussis.
Thermophysical properties of matter, in The TRPC data serie (Plenum, 1970), Vols. 1 and 2.
Matthew, N.O., Sadiku, O., IEEE Trans. Edu. 33, 73 (1990).
Mandayam, S., Udpa, L., Udpa, S.S., Lord, W., IEEE Trans. Mag. 32, 1425 (1996). CrossRef
Haji-Sheikh, A., Sparrow, E.M., J. SIAM Appl. Math. 14, 370 (1966). CrossRef
Sanchez-Quesada, F., Sancho-Ruiz, M., Ropdriguez-Vidal, M., Proc IEE 125, 1400 (1978).
Royer, G., IEEE Trans. MTT 19, 813 (1971). CrossRef
GEC-Alsthom, avenue des 3 ch $\hat{\rm e}$ nes, 90000 Belfort, France.