Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T18:09:42.076Z Has data issue: false hasContentIssue false

Theoretical model and experimental investigation of current density boundary condition for welding arc study

Published online by Cambridge University Press:  13 April 2011

A. Boutaghane
Affiliation:
Centre de Recherche Scientifique et Technique en Soudage et Contrôle, CSC, Alger, Algeria GREMI-Site de Bourges, Université d'Orléans/CNRS, BP 4043, 18028 Bourges Cedex 2, France
K. Bouhadef
Affiliation:
Université des Sciences et de la Technologie, Houari Boumediene, USTHB, Alger, Algeria
F. Valensi
Affiliation:
GREMI-Site de Bourges, Université d'Orléans/CNRS, BP 4043, 18028 Bourges Cedex 2, France Université de Toulouse; UPS, INPT; LAPLACE (Laboratoire Plasma et Conversion d'Énergie), 118 route de Narbonne, 31062 Toulouse Cedex 9, France
S. Pellerin*
Affiliation:
GREMI-Site de Bourges, Université d'Orléans/CNRS, BP 4043, 18028 Bourges Cedex 2, France
Y. Benkedda
Affiliation:
Centre de Recherche Scientifique et Technique en Soudage et Contrôle, CSC, Alger, Algeria
Get access

Abstract

This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980)
Hsu, K.C., Etemadi, K., Pfender, E., J. Appl. Phys. 54, 1293 (1983) CrossRef
Kovitya, P., Lowke, J.J., J. Phys. D: Appl. Phys. 18, 53 (1985) CrossRef
Ushio, M., Szekely, J., Chang, C.W., Iron. Steel. 6, 279 (1981)
Kovitya, P., Cram, L.E., Weld. J. 65, 34 (1986)
Wu, C.S., Ushio, M., Tanaka, M., Comput. Mater. Sci. 7, 308 (1997) CrossRef
Goodarzi, M., Choo, R., Toguri, J.M., J. Phys. D: Appl. Phys. 30, 2744 (1997) CrossRef
Zacharia, T., David, S.A., Vitek, J.M., DebRoy, T., Metall. Trans. B 21, 600 (1990) CrossRef
David, S.A., DebRoy, T., Vitek, J.M., MRS Bull. 19, 29 (1994) CrossRef
Zacharia, T., David, S.A., Vitek, J.M., Kraus, H.G., Weld. J. 74, 353s (1995)
Lei, Y., Shi, Y., Murakawa, H., Ueda, Y., Trans. JWRI Osaka Univ. 26, 1 (1997)
Kim, W.H., Fan, H.G., Na, S.J., Num. Heat Transfer A 32, 633 (1997) CrossRef
Fan, H.G., Tsai, H.L., Na, S.J., Int. J. Heat Mass Transfer 44, 417 (2001) CrossRef
Winkler, C., Amberg, G., Inoue, H., Koseki, T., Fuji, M., Sci. Technol. Weld. Join. 5, 8 (2000) CrossRef
Choo, R.T.C., Szekely, J., Weld. J. 71, 77 (1992)
Goodarzi, M., Choo, R., Takasu, T., Toguri, J.M., J. Phys. D: Appl. Phys. 31, 569 (1998) CrossRef
Zhu, P., Lowke, J., Morrow, M., J. Phys. D: Appl. Phys. 25, 1221 (1992) CrossRef
Tanaka, M., Terasaki, H., Ushio, M., Lowke, J.J., Metall. Mater. Trans. 33A, 2043 (2002) CrossRef
Haidar, J., J. Appl. Phys. 87, 3518 (1998) CrossRef
Haidar, J., J. Appl. Phys. 31, 1233 (1998)
Hu, J., Tsai, H.L., J. Appl. Phys 100, 2644 (2006) 0.4pt
Block-Bolten, A., Eagar, T.W., Metall. Trans. B 15B, 461 (1984) CrossRef
Cieslak, M.J., Fuerschbach, P.W., Metall. Trans. B 19B, 319 (1988) CrossRef
Tanaka, M., Lowke, J.J., J. Phys. D: Appl. Phys. 40, R1 (2007) CrossRef
Hsu, K.C., Pfender, E., J. Appl. Phys. 54, 1293 (1983) CrossRef
Fan, H.G., Na, S.-J., Shi, Y.W., J. Appl. Phys. 30, 94 (1997)
Lowke, J.J., Morrow, R., Zhu, P., Haidar, J., Farmer, A.J.D., Haddad, G.N., J. High Temp. Chem. Process. (Coll-Suppl) 3, 499 (1992)
Hu, J., Tsai, H.L., Int. J. Heat Mass Transfer 50, 833 (2007) CrossRef
Lowke, J.J., Morrow, R., Haidar, J., J. Appl. Phys. 30, 2033 (1997)
Hsu, K.C., Pfender, E., J. Appl. Phys. 54, 3818 (1983) CrossRef
Haidar, J., Farmer, A.J.D., J. Appl. Phys. 26, 1224 (1993)
Lowke, J.J., Kovitya, P., Schmidt, H.P., J. Phys. D: Appl. Phys. 25, 1600 (1992) CrossRef
Sansonnens, L., Haidar, J., Lowke, J.J., J. Appl. Phys. 33, 148 (2000)
Zielinska, S., Pellerin, S., Valensi, F., Dzierzega, K., Musiol, K., de Izarra, C., Briand, F., Eur. Phys. J. Appl. Phys. 43, 111 (2008) CrossRef
Y.S. Kim, Ph.D. thesis, M.I.T., Cambridge, 1989
Zielinska, S., Pellerin, S., Valensi, F., Dzierzega, K., Musiol, K., de Izarra, C., Briand, F., Plasma Sources Sci. Technol. 16, 832 (2007) CrossRef
Jonson, P.G., Eagar, T.W., Szekely, J., Metall. Trans. B 26B, 383 (1995) CrossRef
Hu, J., Tsai, H.L., Int. J. Heat Mass Transfer 50, 808 (2007) CrossRef
Wang, Y., Tsai, H.L., Int. J. Heat Mass Transfer 44, 2067 (2001) CrossRef
Gleizes, A., Gonzalez, J.J., Liani, B., Raynal, G., J. Phys. D: Appl. Phys. 26, 1921 (1993) CrossRef
Valensi, F., Pellerin, S., Boutaghane, A., Dzierzega, K., Zielinska, S., Pellerin, N., Briand, F., J. Phys. D: Appl. Phys. 43, 434002 (2010) CrossRef
Dunn, G.J., Eagar, T.W., Metall. Trans. A 17A, 1865 (1986) CrossRef
Razafinimanana, M., Hamidi, L.E., Gleizes, A., Vacquié, S., Plasma Sources Sci. Technol. 4, 501 (1995) CrossRef