Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T17:59:42.836Z Has data issue: false hasContentIssue false

Synthesis and characterization of GaAs thin films grown on ITO substrates

Published online by Cambridge University Press:  08 October 2010

M. Chamekh*
Affiliation:
Centre de Recherches et des Technologies de l'Énergie, Laboratoire de Photovoltaïque, BP 95, Hammam-Lif, 2050, Tunisia
M. Lajnef
Affiliation:
Faculté des Sciences de Gabès, Cité Riadh, Zirig, 6072 Gabès, Tunisia
L. Zerroual
Affiliation:
Laboratoire d'Énergétique et Électrochimie des Solides, Université de Sétif, Sétif, 19000, Algeria
R. Chtourou
Affiliation:
Centre de Recherches et des Technologies de l'Énergie, Laboratoire de Photovoltaïque, BP 95, Hammam-Lif, 2050, Tunisia
Get access

Abstract

Gallium arsenide (GaAs) thin films have been deposited on ITO-coated glass substrates from acid aqueous solution by electrodeposition technique. The structure and the morphology of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM). The optical characteristics were investigated at room temperature using a UV-Vis spectrometer. At lower deposition time, the XRD patterns exhibit a mixture of both cubic and orthorhombic GaAs phases. With further increase of the film thickness, only orthorhombic structure was observed with a preferred (100) orientation. By applying the Debye-Scherrer method, the estimated crystallite size for the (200) orientation ranged from 30 to 50 nm, whereas for the (022) orientation was found to be 13–22 nm. From the AFM measurements, the rms surface roughness ranged between 11.4 and 18.4 nm. The analysis of the optical absorption data of the annealed GaAs film deposited at different times revealed direct band gap energy in the range of 1.60–1.85 eV. The large blueshifts observed in this study can be fully explained by the Burstein-Moss effect.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ciupina, V., J. Optoelectron. Adv. Mater. 2, 589 (2000)
Schrenk, W., Finger, N., Gianordoli, S., Gornik, E., Strasser, G., Appl. Phys. Lett. 77, 3328 (2000) CrossRef
Usami, N., Azuma, Y., Ujihara, T., Sazaki, G., Nakajima, K., Appl. Phys. Lett. 77, 3565 (2000) CrossRef
Gheorghies, C., Gheorghies, L., J. Optoelectron. Adv. Mater. 3, 107 (2001)
Caria, M., Barberini, L., Cadeddu, S., Giannattasio, A., Rusani, A., Sesselego, A., Appl. Phys. Lett. 81, 1506 (2002) CrossRef
Geisz, J.F., Friedman, D.J., Semicond. Sci. Technol. 17, 769 (2002) CrossRef
Korotkov, A.L., J. Appl. Phys. 93, 786 (2003) CrossRef
A.G. Baca, C.I.H. Ashby, Fabrication of GaAs Devices, EMIS Processing Series (The Institution of Electrical Engineers, London, UK, 2005), Vol. 6
M.J. Howes, D.V. Morgan, Gallium Arsenide: Materials, Devices and Circuits (J. Wiley & Sons, New York, 1985)
D.K. Ferry, Gallium Arsenide Technology (H.W. Sams & Co., Indianapolis, Indiana, 1985)
Koguchi, N., Ishige, K., Takahashi, S., J. Vac. Sci. Technol. B 11, 787 (1993) CrossRef
Okamoto, S., Kanemitsu, Y., Min, K.S., Atwater, H.A., Appl. Phys. Lett. 73, 1829 (1998) CrossRef
Chandra, S., Khare, N., Semicond. Sci. Technol. 2, 214 (1987) CrossRef
Dioum, I.G., Vedel, J., Tremillon, B., J. Electroanal. Chem. 139, 329 (1982) CrossRef
Gao, Y., Han, A., Lin, Y., Zhao, Y., Zhang, J., J. Appl. Phys. 75, 549 (1994) CrossRef
Nayak, J., Sahu, S.N., Appl. Surf. Sci. 182, 407 (2001) CrossRef
Kozlov, V.M., Bozzini, B., Bicelli, L.P., J. Alloys Compd. 379, 209 (2004) CrossRef
Mahalingam, T., Lee, S., Lim, H., Moon, H., Kim, Y.D., Sol. Energy Mater. Sol. Cells 90, 2456 (2006) CrossRef
Nayak, J., Sahu, S.N., Physica E 41, 92 (2008) CrossRef
Prathap, P., Revathi, N., Venkata Subbaiah, Y.P., Ramakrishna Reddy, K.T., J. Phys.: Condens. Matter 20, 035205 (2008)
B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, USA, 1978)
Tauc, J., Grigorovici, R., Vancu, A., Phys. Stat. Sol. 15, 627 (1966) CrossRef
McGuire, G.E., Schweitzer, G.K., Carlson, T.A., Inorg. Chem. 12, 2450 (1973) CrossRef
Vinodkumar, R., Lethy, K.J., Beena, D., Detty, A.P., Navas, I., Nayar, U.V., Pillai, V.P.M., Ganesan, V., Reddy, V.R., Sol. Energy Mater. Sol. Cells 94, 68 (2010) CrossRef
Burstein, E., Phys. Rev. 93, 632 (1954) CrossRef
Moss, T.S., Proc. Phys. Soc. Lond. B 76, 775 (1954) CrossRef
Raymond, A., Roberts, J.L., Bernard, C., J. Phys. C 12, 2289 (1979) CrossRef
De-Sheng, J., Makita, Y., Ploog, K., Queisser, H.J., J. Appl. Phys. 53, 999 (1982) CrossRef
Sernelius, B.E., Phys. Rev. 33, 8582 (1986) CrossRef
Bennett, S., Lowney, J.R., J. Appl. Phys. 62, 521 (1987) CrossRef
Borghs, G., Bhattacharyya, K., Deneffe, K., Mieghem, P.V., Mertens, R., J. Appl. Phys. 66, 4381 (1989) CrossRef