Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T20:47:58.441Z Has data issue: false hasContentIssue false

Surface characteristics and printing properties of PET fabric treated by atmospheric dielectric barrier discharge plasma

Published online by Cambridge University Press:  16 January 2009

U. M. Rashed
Affiliation:
Physics department, Faculty of science, Al-Azhar university, Nasr city, Cairo, Egypt
H. Ahmed
Affiliation:
Unit of textile research, center of national research, Giza, Cairo, Egypt
A. Al-Halwagy
Affiliation:
Unit of textile research, center of national research, Giza, Cairo, Egypt
A. A. Garamoon*
Affiliation:
Center of plasma technology, Faculty of science, Al-Azhar university, Nasr city, Cairo, Egypt
Get access

Abstract

PET (Poly ethylene terephthalate) fabric was treated using dielectric barrier discharge (DBD) as a type of low temperature plasma under atmospheric pressure for 1 to 15 min and different powers ranging between 0.3 to 5 W. Effects of DBD treatment on the surface of a test PET fabric are examined, reported and discussed. The surface analysis and characterization were performed using X-ray diffraction (XRD), Fourier transition infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) before and following the DBD processing. SEM analysis shows significant surface morphology changes in plasma treated polyester fabric surface, while FTIR analysis indicates that the reactivity of the surface was increased. The discharge parameters used are correlated with the changes in the surface characteristics found after DBD processing of various durations, in atmospheric air environment.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.R. Roth, Industrial Plasmas Engineering, Applications to nonthermal plasma processing, Vol. 2 (2001)
I. Radu, R. Bartnikas, M.R. Wertheimer, J. Phys. D: Appl. Phys. 36, (2003)
Abdel-Salam, M., Hashem, A., Yehia, A., Mizuno, A., Turky, A., Gabr, A., J. Phys. D: Appl. Phys. 36, 252 (2003) CrossRef
Borcia, G., Anderson, C.A., Brown, N.M.D., Plasma Sources Sci. Technol. 14, 259 (2005) CrossRef
Cui, N.-Y., Upadhyay, D.J., Anderson, C.A., Brown, N.M.D., Surf. Coat. Technol. 192, 94 (2005) CrossRef
Liu, C., Brown, N.M.D., Meenan, B.J., App. Surf. Sci. 252, 2297 (2006) CrossRef
Paulussen, S., Rego, R., Goossens, O., Vangeneugden, D., Rose, K., J. Phys. D: Appl. Phys. 38, 568 (2005) CrossRef
Kogelschatz, U., Plasma Chem. Plasma Process. 23, 1 (2003) CrossRef
Abdel-Salam, M., Hashem, A., Yehia, A., Mizuno, A., Turky, A., Gabr, A., J. Phys. D: Appl. Phys. 36, 252 (2003) CrossRef
Yoon, J., Mc Cord, M.G., Jae, S., Bok, C., Text. Res. J. 75, 771 (2005)
Dai, X.J., Hamberger, S.M., Bean, R.A., Australian J. Phys. 48, 939 (1995) CrossRef
Wong, K.K., Ato, X.M., Yuen, C.W.M., Yeung, K.W., Text. Res. J. 69, 846 (1999) CrossRef
Mc Cord, M., Hwang, Y., Hauser, P., Qiu, Y., Cuomo, J., Hankins, O., Bourham, M., Canup, L., Text. Res. J. 72, 491 (2002) CrossRef
A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (IEEE Press, New York, 1994), pp. 216–245
Okuno, T., Yasuda, T., Yasuda, H., Text. Res. J. 62, 474 (1992) CrossRef
Tasi, P., Wadsworth, L., Roth, R., Text. Res. J. 67, 359 (1997)
Zhao, R., Wadsworth, L.C., Zhang, D., Sun, C.Q., AATCC 6, 21 (2003)
Yong, Q.C., Martin, L.K., J. Appl. Polym. Sci. 51, 389 (1994) CrossRef
Ryu, J., Wakida, T., Takaishi, T., Text. Res. J. 6, 595 (1991) CrossRef
T. Merten, H. Thomas, H. Höcker, Proc. 9th Int. Wool Textile Res. Conf., Biella, Italy, 1995, Vol. 4, pp. 386–393