Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T18:31:22.582Z Has data issue: false hasContentIssue false

Study of carrier dynamics of N,N′-diphenyl-N,N′bis (1,1′-biphenyl)-4,4′-diamine (NPB) through the frequency dependence of impedance spectroscopy and particle swarm optimization algorithm

Published online by Cambridge University Press:  24 April 2014

Chao Tang*
Affiliation:
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Singapore-Jiangsu Joint Research Center for Organic/Bio Electronics & Information Displays (COEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, P.R. China
Xu-Liang Wang
Affiliation:
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Singapore-Jiangsu Joint Research Center for Organic/Bio Electronics & Information Displays (COEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, P.R. China
Hui Xu
Affiliation:
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Singapore-Jiangsu Joint Research Center for Organic/Bio Electronics & Information Displays (COEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, P.R. China
Rui-Lan Liu
Affiliation:
College of automation, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, P.R. China
Zhou Rong
Affiliation:
College of automation, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, P.R. China
Wei Huang
Affiliation:
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Singapore-Jiangsu Joint Research Center for Organic/Bio Electronics & Information Displays (COEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046, P.R. China
*
Get access

Abstract

In this paper, carrier dynamics in N,N′-diphenyl-N,N′bis(1,1′-biphenyl)-4,4′-diamine (NPB) was studied using impedance spectroscopy (IS) and particle swarm optimization algorithm (PSO). We applied PSO to fit the frequency dependence of impedance spectroscopy of NPB, and achieved the charge-carrier transit time and the dispersive parameters of NPB, and then obtained carrier mobility. The impacts of the dispersive degree on the impedance had been analyzed. Though PSO, the three unknown parameters, charge-carrier transit time τdc and dispersive degree M, α in the admittance model were achieved simultaneously. The results verified the reliability of this method. Furthermore, we have presented the advantages of PSO compared with the traditional nonlinear least squares algorithm. In our limited knowledge, this paper begins the work to study materials in the deep level of algorithm

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tang, C.W., VanSlyke, S.A., Appl. Phys. Lett. 51, 931 (1987)
Xue, J., Uchida, S., Rand, B.P., Forrest, S.R., Appl. Phys. Lett. 84, 3013 (2004)CrossRef
Angelis, F.D., Cipolloni, S., Mariucci, L., Fortunato, G., Appl. Phys. Lett. 86, 203505 (2005)CrossRef
Haddock, N.J., Domercq, B., Kippelen, B., Electr. Lett. 41, 444 (2005)CrossRef
Blom, P.W.M., Vissenberg, M.C.J.M., Mater. Sci. Eng. R 27, 53 (2000)CrossRef
Hung, L.S., Chen, C.H., Mater. Sci. Eng. R 39, 143 (2002)CrossRef
Cornil, J., Bredas, J.-L., Zaumseil, J., Sirringhaus, H., Adv. Mat. 19, 1791 (2007)CrossRef
Lebedev, E., Dittrich, Th., Petrova-Koch, V., Karg, S., Brütting, W., Appl. Phys. Lett. 71, 2686 (1997)CrossRef
Campbell, A.J., Bradley, D.D.C., Antoniadis, H., J. Appl. Phys. 89, 3343 (2001)CrossRef
Abkowitz, M., Facci, J.S., Rehm, J., J. Appl. Phys. 83, 2670 (1998)CrossRef
Poplavskyy, D., Nelson, J., J. Appl. Phys. 93, 341 (2003)CrossRef
Karg, S., Dyakonov, V., Meier, M., Riess, W., Paasch, G., Synth. Met. 67, 165 (1994)CrossRef
Pinner, D.J., Friend, R.H., Tessler, N., J. Appl. Phys. 97, 014504 (2004)CrossRef
Borsenberger, P.M., Weiss, D.S., Organic Photoreceptors for Imaging Systems (Marcel Dekker Inc., New York, 1993), Chap. 9Google Scholar
Tsung, K.K., So, S.K., J. Appl. Phys. 106, 8 (2009)CrossRef
Meilun, S., Principles and Applications of AC Impedance Spectroscopy (National Defence Industry Press, Beijing, 2001), pp. 2731 Google Scholar
Martens, H.C.F., Brom, H.B., Blom, P.W.M., Phys. Rev. B 60, 12 (1999)CrossRef
Berleb, S., Brütting, W., Phys. Rev. Lett. 89, 28 (2002)CrossRef
Nguyen, N.D., Schmeits, M., Loebl, H.P., Phys. Rev. B 75, 7 (2007)CrossRef
Tsang, S.W., So, S.K., Xu, J.B., J. Appl. Phys. 99, 1 (2006)CrossRef
Tripathi, D.C., Tripathi, A.K., Mohapatra, Y.N., Appl. Phys. Lett. 98, 033304 (2011)CrossRef
Schneider, J.B., Understanding the Finite-Difference Time-Domain Method (Washington State University, 2010), www.eecs.wsu.edu/~schneidj/ufdtd [online]
Kepler, R., Beeson, P., Jacobs, S., Anderson, R., Sinclair, M., Valencia, V., Cahill, P., Appl. Phys. Lett. 66, 3618 (1995)CrossRef
Tsutsui, T., Tokuhisa, H., Era, M., Proc. SPIE Int. Soc. Opt. Eng. 3281, 230 (1998)
Chen, B., Lai, W., Gao, Z., Lee, C., Lee, S., Gambling, W., Appl. Phys. Lett. 75, 4010 (1999)CrossRef
Böttger, H., Bryksin, V.V., Hopping Conduction in Solids (Akademie-Verlag, Berlin, 1985), Chap. 6, p. 224Google Scholar
Pedersen, M.E.H., Chipperfield, A.J., Appl. Soft Comput. 10, 2 (2010)CrossRef
Sedighizadeh, D., Masehian, E., International Journal of Computer Theory and Engineering 1, 5 (2009)
Mason, M.G., Hung, L.S., Tang, C.W., Lee, S.T., Wong, K.W., Wang, M., J. Appl. Phys. 86, 1688 (1999)CrossRef
Koo, Y.-M., Choi, S.-J., Chu, T.-Y., Song, O.-K., Shin, W.-J., Lee, J.-Y., Kim, J.C., Yoon, T.-H., J. Appl. Phys. 104, 123707 (2008)CrossRef