Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:33:31.457Z Has data issue: false hasContentIssue false

A study of BGaN back-barriers for AlGaN/GaN HEMTs

Published online by Cambridge University Press:  26 November 2012

Jeramy R. Dickerson
Affiliation:
Unité Mixte Internationnale UMI 2958 Georgia Tech-CNRS, F-57070 Metz, France School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Vinod Ravindran
Affiliation:
Unité Mixte Internationnale UMI 2958 Georgia Tech-CNRS, F-57070 Metz, France School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Tarik Moudakir
Affiliation:
Unité Mixte Internationnale UMI 2958 Georgia Tech-CNRS, F-57070 Metz, France
Simon Gautier
Affiliation:
Unité Mixte Internationnale UMI 2958 Georgia Tech-CNRS, F-57070 Metz, France
Paul L. Voss*
Affiliation:
Unité Mixte Internationnale UMI 2958 Georgia Tech-CNRS, F-57070 Metz, France School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Abdallah Ougazzaden
Affiliation:
Unité Mixte Internationnale UMI 2958 Georgia Tech-CNRS, F-57070 Metz, France School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
Get access

Abstract

We study the use of a BGaN back-barrier layer in the GaN buffer of AlyGa1−yN/GaN highelectron mobility transistors to improve confinement of carriers in the 2D electron gas region. Unlike InGaN back-barrier designs, whose polarization-induced sheet charges form an electrostatic barrier at the backbarrier/ buffer interface, BGaN back-barrier designs create an electrostatic barrier at the channel/backbarrier interface. This can result in carrier confinement to sub-15 nm thickness, even when the channel is 30 nm wide. Although polarization sheet charges due to the BGaN back-barrier form a secondary well at the back-barrier/buffer interface, increasing the thickness of the back-barrier may move the secondary well so that it no longer interacts with the primary channel.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asif Khan, M. et al., Appl. Phys. Lett. 63, 1214 (1993)CrossRef
Meneghesso, G. et al., IEEE Trans. Device Mater. Relib. 8, 332 (2008)CrossRef
Lee, D.S. et al., IEEE Electron Device Lett. 32, 1525 (2011)CrossRef
Ambacher, O. et al., J. Appl. Phys. 85, 3222 (1999)CrossRef
Bahat-Treidel, E. et al., Phys. Status Solidi C 7, 2408 (2010)CrossRef
Chen, C.Q. et al., Appl. Phys. Lett. 82, 4593 (2003)CrossRef
Cordier, Y. et al., J. Cryst. Growth 278, 393 (2005)CrossRef
Lee, K.H. et al., Appl. Phys. Lett. 96, 212105 (2010)CrossRef
Palacios, T. et al., IEEE Electron Device Lett. 27, 13 (2006)CrossRef
Jie, L. et al., IEEE Electron Device Lett. 27, 10 (2006)
Liu, J. et al., IEEE Trans. Electron Devices 54, 2 (2007)CrossRef
Quan, S. et al., J. Semiconductors 31, 044003 (2010)
Cho, E. et al., Appl. Phys. Lett. 99, 103505 (2011)CrossRef
Gaska, R. et al., J. Appl. Phys. 85, 3009 (1999)CrossRef
Ravindran, V. et al., Appl. Phys. Lett. 100, 243503 (2012)CrossRef
Fiorentini, V. et al., Physical Review B 60, 8849 (1999)CrossRef
Silvaco, I., Silvaco Atlas User Manual, 2012, http://www.silvaco.com/
Feneberg, M., Thonke, K., J. Phys. Condens. Matter 19, 403201 (2007)CrossRef
Ambacher, O. et al., J. Phys. Condens. Matter 14, 3399 (2002)CrossRef
Sakai, S., Ueta, Y., Terauchi, Y., Jpn J. Appl. Phys. 32, 4413 (1993)CrossRef
Orsal, G. et al., J. Cryst. Growth 310, 5058 (2008)CrossRef
Carlo, A.D. et al., Appl. Phys. Lett. 76, 3950 (2000)
Sala, F.D. et al., Appl. Phys. Lett. 74, 2002 (1999)
Bougrov, V., Levinshtein, M.E., Rumyantsev, S.L., Zubrilov, A., in Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, edited by Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S. (Wiley, New York, 2001), pp.130Google Scholar
Vurgaftman, I., Meyer, J.R., J. Appl. Phys. 94, 3675 (2003)CrossRef
Topsakal, M., Aktürk, E., Ciraci, S., Phys. Rev. B 79, 115442 (2009)CrossRef
Ougazzaden, A. et al., Appl. Phys. Lett. 93, 083118 (2008)CrossRef
Shimada, K., Jpn J. Appl. Phys. 45, L358 (2006)CrossRef
Bi, Y. et al., Eur. Phys. J. Appl. Phys. 55, 10102 (2011)CrossRef
Kelekci, O. et al., Physica B: Condens. Matter 406, 1513 (2011)CrossRef
Pantzas, K. et al., J. Cryst. Growth, in press, DOI: 10.1016/j.jcrysgro.2012.08.041