Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:15:43.290Z Has data issue: false hasContentIssue false

Structural, optical and thermal properties ofβ-SnS2 thin films prepared by the spraypyrolysis

Published online by Cambridge University Press:  15 March 2000

C. Khélia
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
F. Maïz
Affiliation:
Équipe de photothermique de Nabeul, Institut Préparatoire aux Études d'Ingénieur de Nabeul, B.P. 62, Merazka 8000 Nabeul, Tunisia
M. Mnari
Affiliation:
Laboratoire de Chimie Analytique, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
T. Ben Nasrallah
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
M. Amlouk
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
S. Belgacem
Affiliation:
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
Get access

Abstract

Tin disulfide β-SnS2 thin films have been prepared on pyrex substrates by the spray pyrolysis technique using tin tetrachloride and thiourea as starting materials. The depositions were carried out in the range of substrate temperatures from 240 to 400 °C. Highly c-axis oriented β-SnS2 films, having a strong (001) X-ray diffraction line are obtained at temperature 280 °C and using concentration ratio in solution $\Re = [{\rm S}]/[{\rm Sn}] = 2.5$. Films surfaces were analyzed by contact Atomic Force Microscopy (AFM) and by Scanning Electron Microscopy (SEM) in order to understand the effect of the deposited temperature on the surface structure. On the other hand, from transmission and reflection spectra, the band gap energy determined is about 2.71 eV. Finally using the photodeflection spectroscopy technique, the thermal conductivity Kc and diffusivity Dc were obtained. Their values are 10 Wm−1K−1 and 10−5 m2s−1 respectively.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Julien, C., Eddreif, M., Samaras, I., Balkanski, M., Mater. Sci. Eng. B 15, 70 (1992). CrossRef
Engelken, R.D., McCoud, H.E., Chuan Lee, M. Slayton, H. Ghreishi, J. Electrochem. Soc. 134, 2696 (1987). CrossRef
Golubkov, A.V., Dubrovskii, G.V., Prokof'ev, A.V., Phys. Solid State 36, 1453 (1994).
Nnebesny, K.W., Collins, G.E., Lee, P.A., Chau, L.K., Danziger, J., Osburn, E., Armstrong, N.R., Chem. Mater. 3, 829 (1991). CrossRef
Shibata, T., Miura, T., Kishi, T., Nagai, T., J. Cryst. Growth 106, 593 (1990). CrossRef
Arora, S.K., Patel, D.H., Agarwal, M.K., Cryst. Res. Technol. 28, 623 (1993). CrossRef
Arora, S.K., Patel, D.H., Agarwal, M.K., J. Cryst. Growth 131, 268 (1993). CrossRef
Arora, S.K., Patel, D.H., Agarwal, M.K., J. Mater. Sci. 29, 3979 (1994). CrossRef
Bhira, L., Amlouk, M., Belgacem, S., Bennaceur, R., Barjon, D., Phys. Stat. Sol. A 165, 141 (1998). 3.0.CO;2-H>CrossRef
Belgacem, S., Bennaceur, R., Rev. Phys. Appl. 25, 55 (1990).
E.J. Johnson, Optical Properties of III-V compounds, in Semiconductor and Semimetal, edited by R.K. Willardson, A.C. Beer (Academic Press, New York, 1967), Vol. 3, p. 157.
N. Yacoubi, S. Ben Cheikh, M. Sfar, Rev. Gén. Therm., 393 (1992).
Fernelus, N.C., J. Appl. Phys. 51, 1 (1981).