Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T16:49:40.700Z Has data issue: false hasContentIssue false

Structural, EPR and optical properties of Zn0.75TM0.25O (TM = Mn, Fe, Co, Ni) aerogel nanoparticles

Published online by Cambridge University Press:  17 June 2014

Amor Sayari*
Affiliation:
Department of Physics, Faculty of Science, King Abdulaziz University, North Jeddah Branch, PO Box 80203, Jeddah 21589, Saudi Arabia Équipe de Spectroscopie Raman, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, El-Manar, 2092 Tunis, Tunisia
Lassaad El Mir
Affiliation:
Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, Riyadh 11623, Saudi Arabia Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabes University, Faculty of Sciences in Gabes, 6072 Gabes, Tunisia
Hans Jürgen von Bardeleben
Affiliation:
Institut des NanoSciences de Paris (INSP) UMR CNRS 7588, Universités Pierre et Marie Curie (Paris 6) et Denis Diderot (Paris 7), Campus Boucicaut, 140 rue de Lourmel, 75015 Paris, France
Get access

Abstract

ZnO nanopowders with different 3d transition metal (TM) doping (TM = Mn, Fe, Co, Ni) were synthesized by a new protocol based on slow hydrolyse of zinc acetate dissolved in methanol and supercritical drying in ethyl alcohol. The prepared Zn1−xTMxO (x = 0.25) nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), optical absorption and electron paramagnetic resonance spectroscopy (EPR). The results demonstrated that the TM dopant significantly affects the structural and magnetic properties of the samples. From the XRD spectra, the lattice parameters, average crystallite size and microstrain values were obtained. All ZnTMO nanoparticles show an expansion of the lattice parameters compared those of the bulk samples. Unit cell volume was minimized with Fe doping and increased as the atomic number of the dopant moved away from Fe. The XRD pattern indicates the formation of hexagonal wurtzite phase of ZnO for all the TM dopants. Electron microscopy characterization showed that the size of the Zn1−xTMxO particles is about 25 nm did not change significantly for the different dopants. Optical absorption measurements show that band gap energies of the TM-doped ZnO nanoparticles are around 3.2 eV. The Urbach energy of the ZnTMO nanopowders varies with the TM dopant. From magnetic measurements we observed the presence of room temperature ferromagnetic order in our TM-doped ZnO samples. EPR spectra confirm that TM ions were mainly incorporated as TM2+, occupying the Zn2+ sites in the wurtzite structure of ZnO. Room temperature ferromagnetic order was observed only in Ni- and Co-doped ZnO samples, whereas Mn- and Fe-doped powders showed only antiferromagnetic and paramagnetic interactions, respectively. The correlation between the structural and magnetic properties as a function of the TM dopant is discussed.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yoo, Y.Z., Fukumura, T., Jin, Z., Hasegawa, K., Kawasaki, M., Ahmet, P., Chikyow, T., Kainuma, H., J. Appl. Phys. 90, 90446 (2001)CrossRef
Kane, M.H., Shalini, K., Summers, C.J., Varatharajan, R., Nause, J., Vestal, C.R., Zhang, Z.J., Ferguson, I.T., J. Appl. Phys. 97, 023906 (2005)CrossRef
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D., Science 287, 1019 (2000)CrossRef
Gupta, A., Cao, H., Parekh, K., Rao, K., Raju, A., Waghmare, U., J. Appl. Phys 101, 09N513 (2007)CrossRef
Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M.D., Phys. Rev. Lett. 93, 177206 (2004)CrossRef
Wang, J.B., Huang, G.J., Zhong, X.L., Sun, L.Z., Zhou, Y.C., Liu, E.H., Appl. Phys. Lett. 88, 252502 (2006)CrossRef
Jayakumar, O.D., Gopalakrishnan, I.K., Sudakar, C., Kadam, R.M., Kulshreshtha, S.K., J. Cryst. Growth 300, 358 (2007)CrossRef
Ben Mahmoud, A., von Bardeleben, H.J., Cantin, J.L., Chikoidze, E., Mauger, A., J. Appl. Phys 101, 013902 (2007)CrossRef
Sharma, P.K., Dutta, R.K., Pandey, A.C., Layek, S., Verma, H.C., J. Magn. Magn. Mater. 321, 2587 (2009)CrossRef
Dinesha, M.L., Jayanna, H.S., Ashoka, S., Chandrappa, G.T., J. Optoelectron. Adv. Mater. 11, 964 (2009)
Mandal, S.K., Das, A.K., Nath, T.K., Karmakar, D., Satpati, B., J. Appl. Phys. 100, 104315 (2006)CrossRef
Duan, L.B., Rao, G.H., Yu, J., Wang, Y.C., Solid State Commun. 145, 525 (2008)CrossRef
Huang, G.J., Wang, J.B., Zhong, X.L., Zhou, G.C., Yan, H.L., J. Mater. Sci. 42, 6464 (2007)CrossRef
Sharma, P.K., Prashant, K., Dutta, R.K., Ranu, K., J. Magn. Magn. Mater. 321, 3457 (2009)CrossRef
Tahir, N., Hussain, S.T., Usman, M., Hasanain, S.K., Mumtaz, A., Appl. Surf. Sci. 255, 8506 (2009)CrossRef
Gao, D., Zhang, Z., Fu, J., Xu, Y., Qi, J., Xue, D., J. Appl. Phys. 105, 113928 (2009)CrossRef
Kumar, S., Kim, Y.J., Koo, B.H., Gautam, S., Chae, K.H., Kumar, R., Lee, C.G., Mater. Lett. 63, 194 (2009)CrossRef
Young Mok, C., Woong Kil, C., Hyojin, K., Dojin, K., Ihm, Y., Appl. Phys. Lett 80, 3358 (2002)
Popovici, E.J., Muresan, L., Hristea, A., Indrea, E., Vasilescu, M., J. Alloys Compd. 434–435, 809 (2007)CrossRef
Sati, P., Pashchenko, V., Stepanov, A., Fizika Nizkikh Temperature 33, 1222 (2007)
Jayakumar, O.D., Salunke, H.G., Kadam, R.M., Mohapatra, M., Yaswant, G., Kulshreshtha, S.K., Nanotechnology 17, 1278 (2006)CrossRef
El Mir, L., Ghribi, F., Hajiri, M., Ben Ayadi, Z., Djessas, K., Cubukcu, M., von Bardeleben, H.J., Thin Solid Films 519, 5787 (2011)CrossRef
Roberts, B.K., Pakhomov, A.B., Shutthanandan, V.S., Krishnan, K.M., J. Appl. Phys 97, 10D310 (2005)CrossRef
Swanson, H.E., Fuyat, R.K., Natl. Bur. Stand. Circ. (US) 2, 25 (1953)
Dinesha, M.L., Jayanna, H.S., Mohanty, S., Ravi, S., J. Alloys Compd. 480, 618 (2008)
Wang, B., Iqbal, J., Shan, X., Huang, G., Fu, H., Yu, R., Yu, D., Mater. Chem. Phys. 113, 103 (2009)CrossRef
Strachowski, T., Grzanka, E., Lojkowski, W., Godlewski, M., Yatsuenenko, S., Presz, A., Matysiak, H., Piticescu, R.R., Monty, C.J., J. Appl. Phys. 89, 242102 (2006)
Sayari, A., KONA Powder and Particle Journal 30, 119 (2013)CrossRef
Ashtaputre, S.S., Deshpande, A., Marathe, S., Wankhede, M.E., Chimanpure, J., Pasricha, R., Urban, J., Haram, S.K., Gosavi, S.W., Kulkarni, S.K., Pramana J. Phys. 65, 615 (2005)CrossRef
Saleh, R., Djaja, N.F., Prakoso, S.P., J. Alloys Compd. 546, 48 (2013)CrossRef
Cotton, F.A., Goodgame, D.M.L., Goodgame, M., J. Am. Chem. Soc. 83, 4690 (1961)CrossRef
Schwartz, D.A., Norberg, N.S., Nguyen, Q.P., Parker, J.M., Gamelin, D.R., J. Am. Chem. Soc. 125, 13205 (2003)CrossRef
Caglar, M., Ilican, S., Caglar, Y., Thin Solid Films 517, 5023 (2009)CrossRef
El Mir, L., Ben Ayadi, Z., Rahmouni, H., El Ghoul, J., Djessas, K., von Bardeleben, H.J., Thin Solid Films 517, 6007 (2009)CrossRef
Cody, G.D., Tiedje, T., Brooks, B., Goldestein, Y., Phys. Rev. Lett. 47, 1480 (1981)CrossRef
Ilican, S., J. Alloys Compd. 553, 225 (2013)CrossRef
Majeed Khan, M.A., Wasi Khan, M., Alhoshan, M., AlSalhi, M.S., Aldwayyan, A.S., Appl. Phys. A 100, 4 (2010)
Gabbott, P., Principles and Applications of Thermal Analysis (Blackwell Publishing, Singapore, 2008)CrossRefGoogle Scholar
Karmakar, D., Mandal, S.K., Kadam, R.M., Paulose, P.L., Rajarajan, A.K., Nath, T.K., Das, A.K., Dasgupta, I., Das, G.P., Phys. Rev. B 75, 144404 (2007)CrossRef
Reddy, J., Kokila, M.K., Nagabhushana, H., Rao, J.L., Nagabhushana, B.M., Shivakumara, C., Chakradhar, R.P.S., Spectrochimica Acta Part A 79, 476 (2011)CrossRef
Furdyna, J.K., J. Appl. Phys. 53, 7637 (1982)CrossRef
Calleja, J.M., Cardona, M., Phys. Rev. B 16, 3753 (1977)CrossRef
Srinivas, K., Manjunath Rao, S., Venugopal Reddy, P., J. Nanopart. Res. 13, 817 (2011)CrossRef
Kossut, J., Dobrowolski, W., in Handbook of Magnetic Materials, edited by Buschow, K.H.J. (Elsevier, Amsterdam, 1993)Google Scholar
Toloman, D., Mesaros, A., Popa, A., Raita, O., Silipas, T.D., Vasile, B.S., Pana, O., Giurgiu, L.M., J. Alloys Compd. 551, 502 (2013)CrossRef
Jagannatha Reddy, A., Kokila, M.K., Nagabhushana, H., Sharma, S.C., Rao, J.L., Shivakumara, C., Nagabhushana, B.M., Chakradhar, R.P.S., Mater. Chem. Phys 133, 876 (2012)CrossRef
Li, X.L., Xu, X.H., Quan, Z.Y., Guo, J.F., Wu, H.S., Gehring, G.A., J. Appl. Phys. 105, 103914 (2009)CrossRef
Reddy, A.J., Kokila, M.K., Nagabhushana, H., Chakradhard, R.P.S., Shivakumara, C., Rao, J.L., Nagabhushana, B.M., J. Alloys Compd. 509, 5349 (2011)CrossRef
Vlasenko, L.S., Appl. Magn. Res. 39, 103 (2010)CrossRef
Dong, B.-Z., Hu, H., Fang, G.-J., Zhao, X.-Z., Zheng, D.-Y., Sun, Y.-P., J. Appl. Phys. 103, 073711 (2008)CrossRef
Zhao, S.-Y., Lee, D.K., Kim, C.W., Cha, H.G., Kim, Y.H., Kang, Y.S., Bull. Kor. Chem. Soc. 27, 237 (2006)
Rahman, O., Mohapatra, S.C., Ahmad, S., Mater. Chem. Phys. 132, 196 (2012)CrossRef
Mauger, A., Appl. Magn. Res. 39, 3 (2010)CrossRef
Sato, K., Katayama-Yoshida, H., Jpn J. Appl. Phys. 39, L555 (2000)CrossRef
Bleanny, D., Rubbins, R.S.A., J. Phys. Soc. Jpn 77, 103 (1961)CrossRef
Furdyna, J.K., J. Appl. Phys. 64, R29 (1988)CrossRef
Jedrecy, N., von Bardeleben, H.J., Zheng, Y., Cantin, J.L., Phys. Rev. B 69, 041308 (2004)CrossRef
Blundell, S., Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics (Oxford University Press, Oxford, 2001)Google Scholar
Anderson, P.W., Phys. Rev. 79, 350 (1950)CrossRef
Jung, S.W., An, S.-J., Yi, G.-C., Jung, C.U., Lee, S.-I., Cho, S., Appl. Phys. Lett. 80, 4561 (2002)CrossRef
Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B., Nat. Mater. 4, 173 (2005)CrossRef
Sluiter, M.H.F., Kawazoe, Y., Sharma, P., Inoue, A., Raju, A.R., Rout, C., Waghmare, U.V., Phys. Rev. Lett. 94, 187204 (2005)CrossRef