Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:59:37.768Z Has data issue: false hasContentIssue false

Structural characterization and electrical properties of nanostructured 4-tricyanovinyl-N,N-diethylaniline thin films

Published online by Cambridge University Press:  23 April 2013

M.M. El-Nahass
Affiliation:
Department of Physics, Faculty of Education, Ain Shams University, Rorxy Square, Cairo 11757, Egypt
H.M. Zeyada
Affiliation:
Department of Physics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
K.F. Abd-El-Rahman
Affiliation:
Department of Physics, Faculty of Education, Ain Shams University, Rorxy Square, Cairo 11757, Egypt
Ahmed A.A. Darwish*
Affiliation:
Department of Physics, Faculty of Education, Ain Shams University, Rorxy Square, Cairo 11757, Egypt Department of Physics, Faculty of Education at Al-Mahweet, Sana’a University, Al-Mahweet, Yemen
*
Get access

Abstract

X-ray diffraction (XRD) patterns indicated that the powder of 4-tricyanovinyl-N,Ndiethylaniline (TCVA) has a polycrystalline structure with triclinic crystal system. The scanning electron microscope of the as deposited TCVA thin film shows a nanocrystalline structure with crystallite size of 45–75 nm. The crystallite size increases by increasing film thickness and annealing temperatures. The dark electrical resistivity decreases with increasing film thickness. Such variations are a consequence of crystallite size effect on the electrical resistivity of the films. The conductivity of the films measured in air is high in comparison to those measured under vacuum by one order. The removal of the hydroxyl group states by evacuation decreased the electrical conductivity of TCVA films. The temperature dependence of the electrical conductivity of TCVA films shows that the conduction is through a thermally activated process having two conduction mechanisms. The average values of activation energies are 0.28 and 0.74 eV for extrinsic and intrinsic conduction mechanisms, respectively. H-O group adsorption is responsible for the extrinsic conduction in TCVA films.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rlngsdorf, H., Cabres, L., Dittrich, A., Ang. Chem. Int. Ed. 30, 76 (1991)
Willhams, D.J., Ang. Chem. Int. Ed. 23, 690 (1984)CrossRef
Miyata, H.S., Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, 1997)Google Scholar
Wolf, J.J., Wortmann, R., Adv. Phys. Org. Chem. 32, 12 (1999)
Safarzadeh-Amiri, A., Can. J. Chem. 62, 1895 (1984)CrossRef
Loutfy, R.O., Law, K.Y., J. Phys. Chem. 84, 2803 (1980)CrossRef
Loutfy, R.O., Pure Appl. Chem. 58, 1239 (1986)CrossRef
Abdel-Mottaleb, M.S.A., Loutfy, R.O., Lapouyade, R., J. Photochem. Photobiol. A 48, 87 (1989)CrossRef
Loutfy, R.O., Law, K.Y., Macromolecules 14, 587 (1981)CrossRef
Law, K.Y., Chem. Phys. Lett. 75, 545 (1980)CrossRef
Law, K.Y., Photochem. Photobiol. 33, 799 (1981)CrossRef
Loutfy, R.O., Arnold, B.A., J. Phys. Chem. 86, 4205 (1982)CrossRef
Loutfy, R.O., Macromolecules 16, 678 (1983)CrossRef
Collins, P.G., Bradley, K., Ishigami, M., Zettl, A., Science 287, 1801 (2000)CrossRef
Saleh, A.M., Gould, R.D., Hassan, A.K., Phys. Status Solidi. A 139, 334 (1993)CrossRef
Collins, R.A., Mohammed, K.A., Thin Solid Films 145, 133 (1986)CrossRef
Sakaguchi, M., Ohta, M., J. Solid State Chem. 61, 130 (1986)CrossRef
Schollhorn, B., Germain, J.P., Pauly, A., Maleysson, C., Blanc, J.P., Thin Solid Films 326, 245 (1986)CrossRef
Germain, J.P., Pauly, A., Maleysson, C., Blanc, J.P., Schollhorn, B., Thin Solid Films 333, 235 (1998)CrossRef
Asiri, A.M., J. Saudi Chem. Soc. 6, 51 (2002)
El-Nahass, M.M., Zeyada, H.M., Abd El-Rahman, K.F., Farag, A.A.M., Darwish, A.A.A., Spectrochimica Acta Part A 69, 205 (2008)CrossRef
El-Nahass, M.M., Abd-El-Rahman, K.F., Darwish, A.A.A., Physica B 403, 219 (2008)CrossRef
Tolansky, S., Multiple – Beam Interference Microscopy of Metals (Academic Press, London, 1970)Google Scholar
Schroder, D.K., Semiconductor Material and Device Characterization (John Wiley & Sons Inc, New York, 1998)Google Scholar
Keithley Instruments, Inc., Low Level Measurements Handbook, 6th edn. (Keithley Instruments, Inc., Cleveland, Ohio, 2004)
Shirley, R., The CRYSFIRE System for Automatic Powder Indexing: User’s Manual (The Lattice Press, Guildford, England, 2000)Google Scholar
Laugier, J., Bochu, B., LMGP-Suite suite of Programs for the Interpretation of X-ray Experiments, ENSP/Laboratoire des Matériaux et du Génie Physique (Saint-Martin-d’Hères, France, 2000)Google Scholar
Holý, V., Pietsch, U., Baumbach, T., High Resolution Xray Scttering From Thin Films and Multilayers (Springer, Berlin, 1999)Google Scholar
Hassan, A.K., Gould, R.D., Phys. Status Solidi A 132, 91 (1992)CrossRef
Velumani, S., Mathew, X., Sebastian, P.J., Solar Energy Mater. Solar Cells 76, 359 (2003)CrossRef
Mahalingam, T., Thanikaikarasan, S., Chandramohan, R., Raja, M., Sanjeeviraja, C., Kim, J.-H., Kim, Y.D., J. Mater. Chem. Phys. 106, 369 (2007)CrossRef
El-Sayed, B.A., Sallam, M.M., Ishak, M.F., Antonious, M.S., Mater. Lett. 34, 280 (1998)CrossRef
Gutmann, E., Lyons, L.E., Organic Semiconductors Part A (Robert E. Krieger Publishing Co., 1981)Google Scholar
Pope, M., Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, Oxford, 1999)Google Scholar
Shafai, T.S., Gould, R.D., Thin Solid Films 516, 383 (2007)CrossRef
Gould, R.D., Hassan, A.K., Thin Solid Films 516, 334 (2007)
Shihub, S.I., Gould, R.D., Navano, S.G., Physica B 222, 136 (1966)CrossRef
Şunel, V., Rusu, G.I., Rusu, G.G., Leontie, L., Şoldea, C., Prog. Org. Coatings 26, 53 (1995)CrossRef
Twarwoski, A., J. Chem. Phys. 77, 5840 (1983)CrossRef