Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T17:28:54.860Z Has data issue: false hasContentIssue false

Sol-gel preparation and characterization of antimony doped tin oxide (ATO) powders and thin films

Published online by Cambridge University Press:  30 October 2009

B. Benrabah*
Affiliation:
Laboratoire de Génie Physique, Université Ibn-Khaldoun, Tiaret, Algeria
A. Bouaza
Affiliation:
Laboratoire de Génie Physique, Université Ibn-Khaldoun, Tiaret, Algeria
S. Hamzaoui
Affiliation:
Laboratoire de Microscopie Électronique et Sciences des Matériaux, U.S.T.M.B, Oran, Algeria
A. Dehbi
Affiliation:
Laboratoire de Génie Physique, Université Ibn-Khaldoun, Tiaret, Algeria
Get access

Abstract

Thin films of antimony-doped tin oxide (ATO) have been prepared by the sol-gel dip-coating (SGDC) process, using tin(II) chloride dehydrate (SnCl2, 2H2O) and antimony (III) chloride (SbCl3) as host and dopant precursors respectively. The effect of antimony doping on the structural, thermal, electrical and optical properties of the samples were investigated. The structure of the (ATO) powders was analysed by X-ray diffraction (XRD) and the microstructure of the thin films by scanning electron microscopy (SEM). It was clear from these investigations that its structure is tetragonal rutile type and that an increase in Sb-doping decreases the crystallite size of the (ATO) particles. Thermal analysis by differential scanning calorimetry (DSC) showed that the crystallization temperature is about 370 °C whatever the Sb-doping amount. The lowest resistivity (2.6 × 10−3 ${\rm \Omega}$ cm) was obtained for the 5% Sb-doped film and the value of the band gap (3.69 eV) for the undoped film, increases slightly with Sb-doping increasing for the doped films.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chopra, K.L., Major, S., Pandya, D.K., Thin Solid Films 102, 1 (1983) CrossRef
Frank, G., Kostlin, H., Appl. Phys. A 27, 197 (1982) CrossRef
Saadaddin, I., Pecquenard, B., Manaud, J.P., Decourt, R., Labrugère, C., Appl. Surf. Sci. 253, 5240 (2007)
Niranjan, R.S., Hwang, Y.K., Kim, D.K., Jhung, S.H., Chang, S.J., Mulla, I.S., Mater. Chem. Phys. 92, 384 (2005) CrossRef
Filho, F.M., Simoes, A.Z., Ries, A., Souza, E.C., Perazolli, L., Cilence, M., Longo, E., Varela, J.A., Ceram. Int. 31, 399 (2005) CrossRef
Thangaraju, B., Thin Solid Films 402, 71 (2002) CrossRef
Fang, T.H., Chang, W.J., Appl. Surf. Sci. 220, 175 (2003) CrossRef
Wang, H.L., Turner, J.A., Li, X.N., Bhattacharya, R., J. Power Sources 171, 567 (2007) CrossRef
Wang, Y., Ma, J., Ji, F., Hu, X.H., Ma, H.L., J. Lumin. 114, 71 (2005) CrossRef
Gonga, J., Chena, Q., Lian, M.R., Liu, N.C., Stevenson, R.G., Adami, F., Sens. Actuat. B 114, 32 (2006)
Lee, S.C., Lee, J.H., Oh, T.S., Kim, Y.H., Sol. Energy Mater. Sol. Cells 75, 481 (2003) CrossRef
Du, G., Zhang, D.L., Zhao, L., Xu, J.M., Zhou, D.X., Key Eng. Mater. 280–283, 831 (2005)
Chatelon, J.P., Terrier, C., Bernstein, E., Berjoan, R., Roger, J.A., Thin Solid Films 247, 162 (1994) CrossRef
Elangovan, E., Shivashandar, S.A., Ramamurthi, K., J. Cryst. Growth 276, 215 (2005) CrossRef
Kololuoma, T., Johansson, L.S., Campbell, J.M., Tolonen, A., Halttunen, M., Haatainen, T., Rantala, J.T., Chem. Mater. 14, 4443 (2002) CrossRef
Terrier, C., Chatelon, J.P., Berjoan, R., Roger, J.A., Thin Solid Films 263, 37 (1995) CrossRef
Lee, S.Y., Park, B.O., Thin Solid Films 510, 154 (2006) CrossRef
Liu, T.J., Jiu, Z.G., Feng, L.R., Wang, T., Appl. Surf. Sci. 254, 6547 (2008) CrossRef
Feng, X., Ma, J., Yang, F., Ji, F., Zong, F., Luan, C., Ma, H., Mater. Lett. 62, 1779 (2008) CrossRef