Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T06:35:50.684Z Has data issue: false hasContentIssue false

Simulation of electromagnetically induced transparency like acoustic transmission assisted by PT-symmetry

Published online by Cambridge University Press:  20 March 2013

Jin Han
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Yuancheng Fan
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Liang Jin
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Zhengren Zhang
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Zeyong Wei
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Chao Wu
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Hongqiang Li*
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Hong Chen
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
Zhanshan Wang
Affiliation:
Department of Physics, Key Laboratory of Advanced Micro-structure Materials (MOE), Tongji University, Shanghai 200092, P.R. China
*
Get access

Abstract

Since the pioneer work by Bender and Boettcher on non-Hermitian Hamiltonian under paritytime (PT) symmetry [Phys. Rev. Lett. 80, 5243 (1998)], PT-symmetry optical coupled systems have been investigated extensively. Here we propose theoretically perfect transparency of a PT-symmetric acoustic coupled system which is comprised of a waveguide channel and two same-sized side-coupled resonators. Specifically, we demonstrate that with the change in the amplitude of attenuation and amplification coefficient, the spatial symmetry of two resonators is spontaneously broken which triggers an acoustic analog of electromagnetically induced transparency (EIT) by assigning anti-phase to the pressure field inside the two resonators.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bender, C.M., Boettcher, S., Phys. Rev. Lett. 80, 5243 (1998)CrossRef
Bender, C.M., Rep. Prog. Phys. 70, 947 (2007)CrossRef
Klaiman, S., Güther, U., Moiseyev, N., Phys. Rev. Lett. 101, 080402 (2008)CrossRef
Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N., Phys. Rev. Lett. 103, 093902 (2009)CrossRef
Rüer, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D., Nat. Phys. 6, 192 (2010)
Chong, Y.D., Ge, L., Stone, A.D., Phys. Rev. Lett. 106, 093902 (2011)CrossRef
Feng, L., Ayache, M., Huang, J., Xu, Y.L., Lu, M.H., Chen, Y.F., Fainman, Y., Scherer, A., Science 333, 729 (2011)CrossRef
Musslimani, Z.H., Phys. Rev. Lett. 100, 030402 (2008)CrossRef
Harris, S.E., Field, J.E., Imamoglu, A., Phys. Rev. Lett. 64, 1107 (1990)CrossRef
Boller, K.J., Imamoglu, A., Harris, S.E., Phys. Rev. Lett. 66, 2593 (1991)CrossRef
Yanik, M.F., Suh, W., Wang, Z., Fan, S., Phys. Rev. Lett. 93, 233903 (2004)CrossRef
Fedotov, V.A., Rose, M., Prosvirnin, S.L., Papasimakis, N., Zheludev, N.I., Phys. Rev. Lett. 99, 147401 (2007)CrossRef
Zhang, S., Genov, D.A., Wang, Y., Liu, M., Zhang, X., Phys. Rev. Lett. 101, 047401 (2008)CrossRef
Papasimakis, N., Fedotov, V.A., Zheludev, N.I., Prosvirnin, S.L., Phys. Rev. Lett. 101, 253903 (2008)CrossRef
Liu, N., Langguth, L., Weiss, T.H., Kästel, J., Fleischhauer, M., Pfau, T., Giessen, H., Nat. Mater. 8, 758 (2009)CrossRef
Kekatpure, R.D., Barnard, E.S., Cai, W., Brongersma, M.L., Phys. Rev. Lett. 104, 243902 (2010)CrossRef
Sun, Y., Jiang, H., Yang, Y., Zhang, Y., Chen, H., Zhu, S., Phys. Rev. B 83, 195140 (2011)CrossRef
Tassin, P., Zhang, L., Koschny, T., Economou, E.N., Soukoulis, C.M., Phys. Rev. Lett. 102, 053901 (2009)CrossRef
Miroshnichenko, A.E., Malomed, B.A., Kivshar, Y.S., Phys. Rev. A 84, 012123 (2011)CrossRef
Rayleigh, B.J.W.S., The Theory of Sound (Macmillan, New York, 1896)Google Scholar
Pan, J., Huo, Y., Yamanaka, K., Sandhu, S., Scaccabarozzi, L., Timp, R., Povinelli, M.L., Fan, S., Fejer, M.M., Harris, J.S., Appl. Phys. Lett. 92, 103114 (2008)CrossRef
Hutson, A.R., McFee, J.H., White, D.L., Phys. Rev. Lett. 7, 237 (1961)CrossRef
White, D.L., J. Appl. Phys. 33, 2547 (1962)CrossRef