Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T18:24:55.536Z Has data issue: false hasContentIssue false

Selective plasma etching treatment of the screen-printed carbon nanotube cold cathode

Published online by Cambridge University Press:  30 April 2013

Jun Yu*
Affiliation:
Hubei Province Key Laboratory of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
*
Get access

Abstract

A high-precision printing and patterning carbon nanotube (CNT) cathode was prepared using the screen-printing method. Selective plasma etchings were introduced to improve field emission properties of the CNT cathode through the reactive ion etching (RIE) system. The field emission characteristics and mechanism of the cathode after etching treatment were studied. It was found that the reactive ion etching could effectively expose plentiful CNTs inside the cathode and protrude them from the surface. Moreover, with the increase of RIE operation pressure, CNT cathode field emission behavior changed from metal-insulation medium-vacuum (MIV) to a classical metallic-microprotrusion (MM) structure field emission model. The results showed that only the cathode with appropriate RIE operation pressure etching has a low operation field and a high emission current density.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, Q.H., Setlur, A.A., Lauerhaas, J.M., Dai, J.Y., Seelig, E.W., Chang, R.P.H., Appl. Phys. Lett. 72, 2912 (1998)CrossRef
Talin, A.A., Dean, K.A., Jaskie, J.E., Solid-State Electron. 45, 963 (2001)CrossRef
Bonard, J.M., Kind, H., Stockli, T., Nilsson, L.O., Solid-State Electron. 45, 893 (2001)CrossRef
Robertson, J., Carbon 37, 759 (1999)CrossRef
Suzuki, M., Kusunoki, T., Sagawa, M., Tsuji, K., IEEE Trans. Electron Devices 49, 1005 (2002)CrossRef
Guo, P.S., Chen, T., Chen, Y.W., Zhang, Z.J., Feng, T., Wang, L.L., Lin, L.F., Sun, Z., Zheng, Z.H., Solid-State Electron. 52, 877 (2008)CrossRef
Akihiko, H., Tetsuya, S., Kunihiko, N., Fumio, A., Zhiying, S., Shuhei, N., Soichiro, O., J. Vac. Sci. Technol. B 24, 1423 (2006)
Chung, D.S., Park, S.H., Lee, H.W., Choi, J.H., Cha, S.N., Kim, J.W., Jang, J.E., Min, K.W., Cho, S.H., Yoon, M.J., Lee, J.S., Lee, C.K., Yoo, J.H., Kim, J.M., Jung, J.E., Jin, Y.W., Park, Y.J., You, J.B., Appl. Phys. Lett. 80, 4045 (2002)CrossRef
Choi, J.H., Zoulkarneev, A.R., Jin, Y.W., Park, Y.J., Chung, D.S., Song, B.K., Han, I.T., Lee, H.W., Park, S.H., Kang, H.S., Kim, H.J., Kim, J.W., Jung, J.E., Kimb, J.M., Baek, H.G., Yu, S.G., Appl. Phys. Lett. 84, 1022 (2004)CrossRef
Kyung, S.J., Park, J.B., Park, B.J., Min, K.S., Lee, J.H., Yeom, G.Y., Appl. Phys. 101, 083305 (2007)CrossRef
Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.-M., Kern, K., Appl. Phys. Lett. 76, 2071 (2000)CrossRef
Luo, Z.X., Ph.D. Thesis, Texas Tech University, (1994)
Xia, C.M., Ph.D. Thesis, Carnegie Mellon University, (2001)
Allen, N.K., Latham, R.V., J. Phys. D: Appl. Phys. 11, 55 (1978)CrossRef
Xu, N.S., in High Voltage Vacuum Insulation: Basic Concepts, Technological Practice, edited by Latham, R.V., 1st edn. (Academic Press, London, 1995)Google Scholar
Fowler, R.H., Nordheim, L.W., Proc. Royal Soc. Math. Phys. Eng. Sci. 119, 173 (1928)CrossRef