Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T15:07:05.336Z Has data issue: false hasContentIssue false

Scanning polarization force microscopy investigation of contact angle and disjoining pressure of glycerol and sulfuric acid on highly oriented pyrolytic graphite and aluminum

Published online by Cambridge University Press:  09 December 2013

Antoniu Moldovan
Affiliation:
Center for Surface Science and NanoTechnology, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
Petru-Marian Bota
Affiliation:
Center for Surface Science and NanoTechnology, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
Teodor Dan Poteca
Affiliation:
Medical and Pharmacy University “Carol Davila”, 37 Dionisie Lupu, Bucharest 020022, Romania
Iulian Boerasu
Affiliation:
Center for Surface Science and NanoTechnology, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
Dionezie Bojin
Affiliation:
Center for Surface Science and NanoTechnology, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
Daniela Buzatu
Affiliation:
Center for Surface Science and NanoTechnology, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania
Marius Enachescu*
Affiliation:
Center for Surface Science and NanoTechnology, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest 060042, Romania Academy of Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania
*
Get access

Abstract

For liquid droplets of sub-micrometer dimensions, the study of wetting properties (quantified by contact angle, disjoining pressure, spreading coefficient, etc.) is possible using the relatively new technique known as scanning polarization force microscopy (SPFM). This non-contact scanning probe microscopy technique was successfully implemented in our laboratory in order to study the wetting properties of glycerol and sulfuric acid on the surface of highly oriented pyrolytic graphite (HOPG) and glycerol on aluminum film deposited on mica. An AC polarization bias of 3 V at 3 kHz frequency was applied between a conductive atomic force microscope tip and the substrate. The resulting polarization force was measured with high accuracy, allowing non-contact topography profile measurements of liquid micro- and nanodroplets. The dependence of the contact angle on droplet height was determined in order to calculate the values of the spreading coefficient and the disjoining pressure between the liquid and substrates. The calculated potential energies give disjoining pressure values of ∼0.4 atm for glycerol on HOPG, ∼0.47 atm for glycerol on aluminum and ∼13 atm for H2SO4 on HOPG. In the case of H2SO4 on HOPG the strength of the force appears to be thirty times bigger than that for glycerol on HOPG and aluminum.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Israelachvili, J.N., Adams, G.E., Nature 262, 774 (1976)CrossRef
Israelachvili, J.N., Tandon, R.K., White, L.R., Nature 277, 120 (1979)CrossRef
Heslot, F., Cazabat, A.M., Levinson, P., Phys. Rev. Lett. 62, 1286 (1989)CrossRef
Cleveland, J.P., Schaffer, T.E., Hansma, P.K., Phys. Rev. B 52, R8692 (1995)CrossRef
Checco, A., Guenoun, P., Phys. Rev. Lett. 91, 186101 (2003)CrossRef
Jung, Y.C., Bhushan, B., J. Vac. Sci. Technol. A 26, 777 (2008)CrossRef
Yu, J., Wang, H., Liu, X., Int. J. Heat Mass Transfer 57, 299 (2013)CrossRef
Hu, J., Xiao, X.D., Ogletree, D.F., Salmeron, M., Science 268, 267 (1995)CrossRef
Moldovan, A., Bota, M., Boerasu, I., Dorobantu, D., Bojin, D., Buzatu, D., Enachescu, M., J. Optoelectron. Adv. Mater. 15, 1101 (2013)
Reder-Christ, K., Schmitz, P., Bota, M., Gerber, U., Falkenstein-Paul, H., Fuß, C., Enachescu, M., Bendas, G., Sensors 13, 12392 (2013)CrossRef
Xu, L., Salmeron, M., Bardon, S., Phys. Rev. Lett. 84, 1519 (2000)CrossRef
Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., Appl. Phys. Lett. 91, 243110 (2007)CrossRef
Fumagalli, L., Ferrari, G., Sampietro, M., Gomila, G., Nano Lett. 9, 1604 (2009)CrossRef
de Gennes, P.G., Rev. Mod. Phys. 57, 827 (1985)CrossRef
Derjaguin, B.V., Churaev, N.V., Muller, V.M., Kitchener, J.A., Surface Forces (Consultants Bureau, New York, 1987)CrossRefGoogle Scholar
Salmeron, M., NATO Science Series 10, 651 (2001)
Xu, L., Salmeron, M., J. Phys. Chem. B 102, 7210 (1998)CrossRef