Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:10:15.335Z Has data issue: false hasContentIssue false

Rheological modelling of complex fluids: IV: Thixotropic and “thixoelastic” behaviour. Start-up and stress relaxation, creep tests and hysteresis cycles

Published online by Cambridge University Press:  15 February 1999

D. Quemada*
Affiliation:
Laboratoire de Biorhéologie et d'Hydrodynamique Physico-chimique (CNRS ESA 7057), Université Denis Diderot Paris VII, LBHP, case 7056, Université Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France
Get access

Abstract

Structural rheological modelling of complex fluids developed in Part I of this series and applied to shear thickening systems (Parts II & III), is now used to improve such a modelling in the case of unsteady behaviour, that is, in the presence of thixotropy. The model is based on an explicit viscosity-structure relationship, η(S), between the viscosity and a structural variable S. Under unsteady conditions, characterized by a reduced shear, Γ(t), shear-induced structural change obeys a kinetic equation (through shear-dependent relaxation times). The general solution of this equation is a time-dependent function, S(t) ≡ S[t, Γ(t)]. Thixotropy is automatically modelled by introducing S[t, Γ(t)] into η(S) which leads directly to η(t) ≡ η[t, Γ(t)], without the need for any additional assumptions in the model. Moreover, whilst observation of linear elasticity requires small enough deformation i.e. no change in the structure, larger deformations cause structural buildup/breakdown, i.e. the presence of thixotropy, and hence leads to a special case of non-linear viscoelasticity that can be called “thixoelasticity”.Predictions of a modified Maxwell equation, obtained by using the above-defined η(S) and assuming G = G 0 S (where G 0 is the shear modulus in the resting state defined by S = 1) are discussed in the case of start-up and relaxation tests. Similarly modified Maxwell-Jeffreys and Burger equations are used to predict creep tests and hysteresis loops. Discussion of model predictions Maynly concerns (i) effects of varying model variables or/and applied shear rate conditions and (ii) comparison with some experimental data.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Quemada, D., Eur. Phys. J. AP 1, 119 (1998). CrossRef
Mewis, J., J. Non-Newtonian Fluid Mech. 6, 1 (1979). CrossRef
Barnes, H.A., J. Non-Newtonian Fluid Mech. 70, 1 (1997). CrossRef
Thurston, G.B., Biorheology 16, 149 (1979).
Cheng, D.C.H., Evans, F., Brit. J. Appl. Phys. 16, 1599 (1965). CrossRef
Quemada, D., Biorheology 21, 423 (1984).
Quemada, D., Biorheology 30, 253 (1993).
McMillan, D.E., Utterback, N.G., Nasrinasrabadi, M., Lee, M.M., Biorheology 23, 63 (1986).
Leonov, A.I., Rheol. Acta 15, 85 (1976). CrossRef
Leonov, A.I., J. Non-Newtonian Fluid Mech. 25, 1 (1987). CrossRef
Coussot, P., Leonov, A.I., Piau, J.M., J. Non-Newtonian Fluid Mech. 46, 179 (1993). CrossRef
de Kruif, C.G., van Iersel, E.M.F., Vrij, A., Russel, W.B., J. Chem. Phys. 83, 4717 (1985). CrossRef
van der Werff, J.C., de Kruif, C.G., J. Rheol. 33, 421 (1989). CrossRef
Bird, R.B., Carreau, P., Chem. Eng. Sci. 23, 427 (1968). CrossRef
Meister, B.J., Trans. Soc. Rheol. 15, 63 (1971). CrossRef
Carreau, J.P., Trans. Soc. Rheol. 16, 99 (1972). CrossRef
Wagner, M.H., Rheol. Acta 15, 133 (1976). CrossRef
Sosky, P.R., Winter, H.H., J. Rheol. 28, 625 (1984). CrossRef
Gallegos, C., Berjano, M., Guerrero, A., Mu, J. noz, V. Flores, J. Texture Stud. 23, 153 (1992). CrossRef
Acierno, D., La Mantia, F.P., Marrucci, G., Titomanlio, G., J. Non-Newtonian Fluid Mech. 1, 125 (1976). CrossRef
Jongschapp, R.J.J., J. Non-Newtonian Fluid Mech. 8, 183 (1981). CrossRef
Mewis, J., Denn, M.M., J. Non-Newtonian Fluid Mech. 12, 69 (1983). CrossRef
H. Giesekus, in Viscoelasticity and Rheology, edited by A.S. Lodge, M. Renardy, J.A. Nohel (Acad. Press, New-York 1985).
Baravian, C., Quemada, D., Parker, A., J. Texture Stud. 27, 371 (1996). CrossRef
Michaels, A.S., Bolger, J.C., I&EC Fundamentals 1, 24 (1962). CrossRefPubMed
Doi, M., Chen, D.J., Chem. Phys. 90, 5271 (1989).
de Rooij, R., Potanin, A.A., van den Ende, D., Mellema, J., J. Chem. Phys. 99, 9213 (1993). CrossRef
Wolthers, W., Duits, M.G.H., van den Ende, D., Mellema, J., J. Rheol. 40, 799 (1996). CrossRef
Sonntag, R.C., Russel, W.B., J. Colloid Interf. Sci. 113, 399 (1986). CrossRef
F. Bueche, Physical Properties of Polymers (Interscience, New-York, 1962).
Glöckle, W.G., Nonnenmacher, T.F., Rheol. Acta 33, 337 (1994). CrossRef
Stastna, J., Zanzotto, L., Ho, K., Rheol. Acta 33, 344 (1994). CrossRef
J.L. Doublier, C. Castelain, J. Lefebvre, in Plant polymeric carbohydrates, edited by F. Meuser, D.J. Manneurs, W. Zeible, (Royal Soc.Chem., Cambridge, 1993).
Fang, T., Tiu, C., Intern. J. Eng. Fluid Mech. 3, 148 (1990).
Quemada, D., Eur. Phys. J. AP 2, 175 (1998). CrossRef
Quemada, D., Eur. Phys. J. AP 3, 309 (1998). CrossRef
Ketz Jr, R.J., Prud'homme, R.K., Graessley, W.W., Rheol. Acta 27, 531 (1988). CrossRef
Bureau, M., Healy, J.C., Bourgoin, D., Joly, M., Rheol. Acta 17, 612 (1978). CrossRef
Toorman, E.A., Rheol. Acta 36, 56 (1997). CrossRef
Cheng, D.C.-H., J. Phys. D 7, L155 (1974) CrossRef
Mewis, J., J. Phys. D 8, L148 (1975) CrossRef
Durlofsky, L.J., Brady, J.F., J. Fluid Mech. 200, 39 (1989). CrossRef