Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T00:22:32.574Z Has data issue: false hasContentIssue false

Resonator with orthogonally polarized dual wavelength output based on layered anisotropic metamaterials

Published online by Cambridge University Press:  05 January 2012

Y.-T. Fang*
Affiliation:
Department of Physics, Zhenjiang Watercraft College, Zhenjiang 212003, P.R. China School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
J. Zhou
Affiliation:
Department of Physics, Ningbo University, Ningbo 315211, P.R. China
*
Get access

Abstract

The transmission properties of a resonator based on one air layer sandwiched by two-layered anisotropic metamaterials with different negative-permittivity tensors are studied through analytical analysis and numerical calculations. The resonator has orthogonally polarized dual wavelength output. The difference of the two wavelengths can be adjusted through changing the permittivity tensors, and the ratio of the intensities of the two orthogonally polarized waves can also be adjusted through changing the polarization direction of incident wave. The study results may find applications in the design of laser resonator.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shelby, R.A., Smith, D.R., Schultz, S., Science 292, 77 (2001)CrossRef
Zhang, Z.M., Fu, C.J., Appl. Phys. Lett. 80, 1097 (2002)CrossRef
Zhou, L., Wen, W., Chan, C.T., Sheng, P., Phys. Rev. Lett. 94, 243905 (2005)CrossRef
Yu, G., Fang, Y., Opt. Laser Technol. 43, 36 (2011)CrossRef
Smith, D.R., Schurig, D., Phys. Rev. Lett. 90, 077405 (2003)CrossRef
Sun, S.L., Huang, X.Q., Zhou, L., Phys. Rev. E 75, 066602 (2007)CrossRef
Hu, L.B., Chui, S.T., Phys. Rev. B 66, 085108 (2002)CrossRef
Grzegorczyk, T.M., Thomas, Z.M., Kong, J.A., Appl. Phys. Lett. 86, 251909 (2005)CrossRef
Hao, J.M., Yuan, Y., Ran, L.X., Jiang, T., Kong, J.A., Chan, C.T., Zhou, L., Phys. Rev. Lett. 99, 063908 (2007)CrossRef
Schurig, D., Smith, D.R., Appl. Phys. Lett. 82, 2115 (2003)CrossRef
Shen, N.-H., Wang, Q., Chen, J., Fan, Y.-X., Ding, J.P., Wang, H.-T., Tian, Y.J., Ming, N.-B., Phys. Rev. B 72, 153104 (2005)CrossRef
Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I., Phys. Rev. Lett. 76, 4773 (1996)CrossRef
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., J. Phys. Condens. Matter 10, 4785 (1998)CrossRef
Wang, L., Chen, H., Zhu, S., Phys. Rev. B 70, 245102 (2004)CrossRef
Fei, L., Zhang, S., Opt. Express 12, 6100 (2004)CrossRef
Xiao, Y., Zhang, S., Li, Y., Chin. Phys. Lett. 20, 230 (2003)
Zhang, S., Li, K., Jin, G., Appl. Opt. 29, 1265 (1990)CrossRef