Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:11:40.443Z Has data issue: false hasContentIssue false

Resolution of coupled Helmholtz equation in the inhomogeneous coaxial waveguides by the finite element method

Published online by Cambridge University Press:  14 March 2007

M. Bour*
Affiliation:
Laboratoire Matériaux, Systèmes et Technologie de l'Informations, Université Ibn Zohr, ESTA, BP 33/S, 80000 Agadir, Morocco Laboratoire de la Physique Théorique de Solide, Université Ibn Zohr, Faculté des Sciences, Agadir, Morocco
A. Toumanari
Affiliation:
Laboratoire de la Physique Théorique de Solide, Université Ibn Zohr, Faculté des Sciences, Agadir, Morocco
D. Khatib
Affiliation:
Laboratoire de la Physique Théorique de Solide, Université Ibn Zohr, Faculté des Sciences, Agadir, Morocco
Get access

Abstract

This paper presents the application of the Finite Element Method FEM to the resolution of system Helmholtz coupled equations that has been obtained in the coaxial waveguides containing magnetic anisotropic materials with loss. This application is based on variational method which necessitates the construction of functional stationary written in the form of integral equation and dependent on the electromagnetic fields. After being minimized, this functional leads to algebraic equation system to which we can apply many numerical resolution algorithms. The electromagnetic study of the waveguide led us to a system of Helmholtz coupled equations which is difficult to be solved analytically. Our software code allows us to determine the electromagnetic field distribution in all points of the coaxial waveguide. The result has been validated when the coaxial waveguide was entirely loaded with air. This software has later been applied when the waveguide was partially filled with a magnetic anisotropic material with loss ( $\varepsilon_r$ $\overline{\overline{\mu_r}}$ ).

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moss, C.D., Teixeira, F.L., Jin Au Kong, IEEE T. Antenn. Propag. 50, 1174 (2002) CrossRef
Belhadj-tahar, N., Fourrier-lamer, A., Chanterac, H., IEEE T. Microw. Theory 38, 1 (1990) CrossRef
Arlette, P.L., Bahrani, A.K., Zienkiewicz, O.C., Proc. IEE 115, 1766 (1968)
Jian-She Wang, N. Ida, IEEE T. Magn. 28, 1438 (1992) CrossRef
Cai, Z., Xiao, S., Bornemanna, J., Vahldieck, R., IEE P.-H 139, 125 (1992)
Bariou, D., Quéffélec, P., Gelin, P., Le Floc'h, M., IEEE T. Magn. 37, 3885 (2001) CrossRef
O.C. Zienkiewicz, La méthode des éléments finis, 3nd edn. (Mc Graw-hill Inc., Paris, 1979)
G. Dhatt, G. Touzot, Une présentation de la méthode des éléments finis, Collection Université de Compiène (Presses de l'université Laval-Quebec, 1981)
Ney, M.M., CHenier, M., Costache, G.I., Int. J. Numer. Model. El. 2, 93 (1989) CrossRef
ALastair McAulay, D., IEEE T. Microw. Theory 25, 382 (1977) CrossRef
Konrad, A., IEEE T. Microw. Theory 24, 553 (1976) CrossRef
A.R. Hippel, Dielectric and waves (John Wiley and Sons, 1954)
J.A. Stratton, Théorie de l'électromagnétisme (Dunod, 1961)
Green, J.J., Sandy, F., IEEE T. Microw. Theory 22, 641 (1974) CrossRef
Yee, K.S., IEEE T. Anten. Propag. 14, 302 (1966)
C. Vassalo, Théorie des guides d'ondes électromagnétiques (Collection Eyrolles and Cent-Enst, 1985)
Nédélec, J.C., Numer. Math. 35, 315 (1980) CrossRef
E. Durant, Solution numériques des équations algébriques, 2nd edn. (Masson, 1985)
R.A. Waldron, Theory of guided electromagnetic waves (Van Nostrand Reinlhold Company LTD, 1969)
C. Brezinski, Accélération de la convergence en analyse numérique (Springer-Verlag, Berlin-Heidelberg, 1977)