Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T18:25:39.950Z Has data issue: false hasContentIssue false

Radiation damage in ion-irradiatedyttria-stabilized cubic zirconia single crystals

Published online by Cambridge University Press:  03 September 2003

L. Thomé*
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bât. 108, 91405 Orsay, France
J. Fradin
Affiliation:
Cellule CNRS Leptons, DGA-DCE-CTA-LOT, 16 bis Av. Prieur de la Côte d'Or, 94114 Arcueil, France
J. Jagielski
Affiliation:
Institute of Electronic Materials Technology, 01-919 Warsaw, Poland, and Andrzej Soltan Institute for Nuclear Studies, 05-400 Swierk/Otwock, Poland
A. Gentils
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bât. 108, 91405 Orsay, France CEA-Cadarache, DEN/DEC/SESC, 13108 Saint Paul-lez-Durance, France
S. E. Enescu
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bât. 108, 91405 Orsay, France Horia Hulubei National Institute for Physics and Nuclear Engineering, 76900 Bucharest, Romania
F. Garrido
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Bât. 108, 91405 Orsay, France
Get access

Abstract

This paper presents a study of the damage production in yttria-stabilized cubic zirconia single crystals irradiated with medium-energy (from 30 to 450 keV) heavy ions (from He to Cs). The disorder created in the two sublattices (Zr4+ and O2−) of the crystals and the lattice sites of heavy ions were determined as a function of the irradiation fluence by in situ Rutherford backscattering and channeling experiments using a 3 MeV 4He ion beam. Damage is created at a depth close to the ion projected range at low fluences and growths towards greater depths with increasing fluences once the saturation has been reached. The kinetics of the damage accumulation process reveals three stages, which (excepted for He) essentially depend on the number of displacements per atom (dpa) induced by irradiating ions (ballistic contribution). Channeling results show that the lattice location of the heaviest atoms (Xe, Cs and I) varies with the nature of implanted species (chemical contribution). The experimental data can be represented in a diagram involving both the number of dpa and the implanted ion concentration, which could be used to predict the damage evolution in other ion-irradiated nuclear ceramics.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heimann, R.B., Vandergraaf, T.T., J. Mater. Sci. Lett. 7, 583 (1988) CrossRef
Degueldre, C., Kasemeyer, U., Botta, F., Ledergerber, G., Mat. Res. Soc. Symp. Proc. 412, 15 (1995) CrossRef
Degueldre, C., Paratte, J.M., Nucl. Technol. 123, 21 (1998) CrossRef
Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de, T. la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkle, J. Mater. Res. 13, 1434 (1998) CrossRef
Lumpkin, G.R., J. Nucl. Mater. 274, 206 (1999) CrossRef
Sickafus, K.E., Hanrahan, R.J., McClellan, K.J., Mitchell, J.N., Wetteland, C.J., Butt, D.P., Chodak III, P., Ramsey, K.B., Blair, T.H., Chidester, K., Matzke, Hj., Yasuda, K., Verrall, R.A., Yu, N., Am. Ceram. Soc. Bull. 78, 66 (1999)
Hj. Matzke, Proceedings of the International Workshop on Advanced Reactors with Innovative Fuels, OECD Publications, Paris (1999), p. 187
Gong, W.L., Lutze, W., Ewing, R.C., J. Nucl. Mater. 277, 239 (2000) CrossRef
Gulati, S.T., Hansson, J.N., Halfinstine, D., Met. Prog. 2, 21 (1984)
R. Stevens, Zirconia and Zirconia Ceramics, Magnesium Elektron Twickenham, United Kingdom (1986)
Yoshimura, M., Ceram. Bull. 67, 1950 (1988)
Li, P., Chen, I.W., Penner-Hahn, J.E., J. Am. Ceram. Soc. 77, 118 (1993); 77, 1281 (1994); 77, 1289 (1994) CrossRef
Wittels, M.C., Sherrill, F.A., J. Appl. Phys. 27, 643 (1956); Phys. Rev. Lett. 3, 176 (1959) CrossRef
Adam, J., Cox, B., Phys. Rev. Lett. 3, 543 (1959) ; J. Nucl. Energy A 11, 31 (1959) CrossRef
Clinard, F.W., Rohr, D.L., Ranken, W.A., J. Am. Ceram. Soc. 60, 287 (1977) CrossRef
Savoini, B., Cáceres, D., Vergara, I., Gonzalez, R., Mu, J.E. noz Santiuste, J. Nucl. Mater. 277, 199 (2000) CrossRef
Fleischer, E.L., Hertl, W., Alford, T.L., Borgesen, P., Mayer, J.W., J. Mater. Res. 5, 385 (1990) CrossRef
Fleischer, E.L., Norton, M.G., Zaleski, M.A., Hertl, W., Carter, C.B., Mayer, J.W., J. Mater. Res. 6, 1905 (1991) CrossRef
Yu, N., Sickafus, K.E., Kodali, P., Nastasi, M., J. Nucl. Mater. 244, 266 (1997) CrossRef
Degueldre, C., Heimgartner, P., Ledergerber, G., Sasajima, N., Hojou, K., Muromura, T., Wang, L., Gong, W.L., Ewing, R.C., Mater. Res. Soc. Symp. Proc. 439, 625 (1997) CrossRef
Yasuda, K., Nastasi, M., Sickafus, K.E., Maggiore, C.J., Yu, N., Nucl. Instrum. Methods B 136-138, 499 (1998) CrossRef
Sickafus, K.E., Matzke, Hj., Yasuda, K., Chodak III, P., Verrall, R.A., Lucuta, P.G., Andrews, R.H., Turos, A., Fromknecht, R., Baker, N.P., Nucl. Instrum. Methods B 141, 358 (1998) CrossRef
Sasajima, N., Matsui, T., Hojou, K., Furuno, S., Otsu, H., Izui, K., Muromura, T., Nucl. Instrum. Methods B 141, 487 (1998) CrossRef
Sickafus, K.E., Wetteland, C.J., Baker, N.P., Yu, N., Butt, D.P., Devanathan, R., Nastasi, M., Bordes, N., Mater. Sci. Eng. A 253, 78 (1998)
Sickafus, K.E., Matzke, Hj., Hartmann, Th., Yasuda, K., Valdez, J.A., Chodak III, P., Nastasi, M., Verrall, R.A., J. Nucl. Mater. 274, 66 (1999) CrossRef
Wang, L.M., Wang, S.X., Ewing, R.C., Philos. Mag. Lett. 80, 341 (2000) CrossRef
Cottereau, E., Camplan, J., Chaumont, J., Meunier, R., Bernas, H., Nucl. Instrum. Methods B 45, 293 (1990) CrossRef
J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, edited by J.F. Ziegler (Pergamon, New York, 1985), Vol. 1
Handbook of Modern Ion Beam Materials Analysis, edited by J.R. Tesmer, M. Nastasi (Materials Research Society, 1995)
Materials Analysis by Ion Channeling, edited by L.C. Feldman, J.W. Mayer, S.T. Picraux (Academic Press, New York, 1982), Chap. 5
Benyagoub, A., Thomé, L., Radiat. Eff. 105, 9 (1987) CrossRef
In order to obtain a reasonable statistics, the measurements at 2.95 MeV were conducted with an integrated charge of 200 $\mu$ C, whereas integrated charges of 20 $\mu$ C were required at 3.02-3.14 MeV
Fradin, J., Thomé, T., Grynszpan, R.I., Thomé, L., Anwand, W., Brauer, G., Nucl. Instrum. Methods B 175-177, 516 (2001) CrossRef
Smith, K., Cline, C.F., J. Am. Ceram. Soc. 45, 249 (1962) CrossRef
Teufer, G., Acta Cryst. 15, 1187 (1962) CrossRef
The Elements, edited by J. Emsley (Oxford University Press, Oxford, 1998)
Villella, P., Conradson, S.D., Espinosa-Faller, F.J., Foltyn, S.R., Sickafus, K.E., Valdez, J.A., Degueldre, C.A., Phys. Rev. B 64, 10410 (2001) APS Link not valid for this citation.
Pouchon, M.A., Döbeli, M., Degueldre, C., Burghartz, M., J. Nucl. Mater. 274, 61 (1999) CrossRef
M.A. Pouchon, Ph.D. Thesis, University of Geneva (1999)