Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T10:48:27.752Z Has data issue: false hasContentIssue false

Quantum transport through Ga2As2 cluster

Published online by Cambridge University Press:  10 June 2014

Fu-Ti Liu
Affiliation:
College of Physics and Electronic Engineering, Yibin University, Yibin 644000, P.R. China College of Physical Science and Technology, Sichuan University, Chengdu 610064, P.R. China Computational Physics Key Laboratory of Sichuan Province of Yibin university, Yibin 644000, P.R. China
Yan Cheng*
Affiliation:
College of Physical Science and Technology, Sichuan University, Chengdu 610064, P.R. China
Fu-Bin Yang
Affiliation:
College of Physical Science and Technology, Sichuan University, Chengdu 610064, P.R. China
Xiang-Rong Chen
Affiliation:
College of Physical Science and Technology, Sichuan University, Chengdu 610064, P.R. China
*
Get access

Abstract

The electronic transport properties of Ga2As2 cluster, which is sandwiched between two semiinfinite Au (1 0 0)-3 × 3 pyramical-shaped electrodes with the Ga-Ga axis of the cluster parallel to the transport direction and the As-As axis of the cluster parallel to the transport direction, respectively, is investigated with a combination of density functional theory and the non-equilibrium Green’s function method. We have simulated the nanoscale junctions breaking process and found that the conductance of cluster decreases then increases when the contact is pulled apart in two configurations. We analyzed the difference of conductance from transmission spectra and projected density of states, and calculated the I-V characteristics of devices in this two configurations when dz = 2.0 Å. The I-V curves display a linear characteristics in the voltage range of 0 ∼ 2.2 V. The negative differential resistance appears within a small range of voltage in the junctions with As-As axis of the cluster parallel to the transport direction when bias is larger than 2.2 V.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bing, G., Roher, H., Gerber, Ch., Weibel, E., Phys. Rev. Lett. 50, 120 (1983)CrossRef
Moriarty, P., Rep. Prog. Phys. 64, 297 (2001)CrossRef
Feng, M., Guo, X., He, X., Ji, W., Du, S., Zhang, D., Zhu, D., Gao, H., J. Am. Chem. Soc. 127, 15338 (2005)CrossRef
Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M., Science 294, 1313 (2001)CrossRef
Andres, R.P., Bein, T., Dorogi, M., Feng, S., Henderson, J.I., Kubiak, C.P., Mahoney, W., Osifchin, R.G., Reifenberger, R., Science 272, 1323 (1996)CrossRef
Palacios, J.J., Phys. Rev. B 72, 125424 (2005)CrossRef
Zhang, X.J., Long, M.Q., Chen, K.Q., Shuai, Z., Wan, Q., Zou, B.S., Zhang, Y., Appl. Phys. Lett. 94, 073503 (2009)CrossRef
Qiu, M., Zhang, Z.H., Deng, X.Q., Chen, K.Q., J. Appl. Phys. 107, 063704 (2010)CrossRef
Pan, J.B., Zhang, Z.H., Ding, K.H., Deng, X.Q., Guo, C., Appl. Phys. Lett. 98, 092102 (2011)CrossRef
Roland, C., Meunier, V., Larade, B., Guo, H., Phys. Rev. B 66, 035332 (2002)CrossRef
Dai, Z.X., Zheng, X.H., Shi, X.Q., Zeng, Z., Phys. Rev. B 72, 205408 (2005)CrossRef
Bao, Q., Lu, Z., Li, J., Loh, K.P., Li, C.M., J. Phys. Chem. C 113, 12530 (2009)CrossRef
An, Y.P., Yang, C.L., Wang, M.S., Ma, X.G., Wang, D.H., J. Phys. Chem. C 113, 15756 (2009)CrossRef
Deng, X.Q., Zhou, J.C., Zhang, Z.H., Tang, G.P., Qiu, M., Appl. Phys. Lett. 95, 103113 (2009)CrossRef
Yu, J.X., Chen, X.R., Sanvito, S., Phys. Rev. B 82, 085415 (2010)CrossRef
Zhang, X.J., Chen, K.Q., Tang, L.M., Long, M.Q., Phys. Lett. A 375, 3319 (2011)CrossRef
Fan, Z.Q., Chen, K.Q., J. Appl. Phys. 109, 124505 (2011)CrossRef
Yu, J.X., Chen, X.R., Sanvito, S., Cheng, Y., Appl. Phys. Lett. 100, 013113 (2012)CrossRef
Liu, F.T., Chen, Y., Yang, F.B., Chen, X.R., Chem. Phys. Lett. 590, 160 (2013)CrossRef
O’Brien, S.C., Liu, Y., Zhang, Q., Heath, J.R., Tittel, F.K., Smalley, R.E., J. Chem. Phys. 84, 4074 (1986)CrossRef
Schafer, R., Becker, J.A., Phys. Rev. B 54, 10296 (1996)CrossRef
Feng, Y.P., Boo, T.B., Kwong, H.H., Kumar, V., Kawazoe, Y., Phys. Rev. B 76, 045336 (2007)CrossRef
Gutsev, G.L., Johnson, E., Mochena, M.D., Bauschlicher, J.C.W., J. Chem. Phys. 128, 144707 (2008)CrossRef
Gutsev, G.L., O’Neal, J.R.H., Saha, B.C., Mochena, M.D., Johnson, E., Bauschlicher, J.C.W., J. Phys. Chem. A 112, 10728 (2008)CrossRef
Zhang, D., Xu, Y., Zhang, J., Miao, X., Phys. Lett. A 376, 3272 (2012)CrossRef
Kohn, W., Sham, L., Phys. Rev. 140, A1133 (1965)CrossRef
Datta, S., Electronic Transport in Mesoscopic System (Cambridge University Press, Cambridge, 1995), p. 117 CrossRefGoogle Scholar
Rocha, A.R., Garcia-Suarez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S., Phys. Rev. B 73, 085414 (2006)CrossRef
Rungger, I., Sanvito, S., Phys. Rev. B 78, 035407 (2008)CrossRef
Perdew, J.P., Phys. Rev. B 33, 8822 (1986)CrossRef
Troullier, N., Martins, J.L., Phys. Rev. B 43, 1993 (1991)CrossRef
Pontes, R.B., Rocha, A.R., Sanvito, S., Fazzio, A., Roque da Silva, A.J., ACS Nano 5, 795 (2011)CrossRef
Kristensen, I.S., Mowbray, D.J., Thygesen, K.S., Jacobsen, K.W., J. Phys. Condens. Matter 20, 374101 (2008)CrossRef
Sellers, H., Ulman, A., Shnidman, Y., Eilers, J.E., J. Am. Chem. Soc. 115, 9389 (1993)CrossRef
Liu, F.T., Chen, Y., Yang, F.B., Chen, X.R., Eur. Phys. J. D 68, 10 (2014)CrossRef
Yu, J.X., Cheng, Y., Sanvito, S., Chen, X.R., Appl. Phys. Lett. 100, 103110 (2012)CrossRef