Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:01:54.823Z Has data issue: false hasContentIssue false

Probe size study of apatite irradiation in stem

Published online by Cambridge University Press:  01 August 2014

Étienne F. Brès*
Affiliation:
Unité des Matériaux et Transformation (UMET), Université des Sciences et Technologies de Lille, Bâtiment C6, 59650 Villeneuve d’Ascq, France
José Reyes-Gasga
Affiliation:
Unité des Matériaux et Transformation (UMET), Université des Sciences et Technologies de Lille, Bâtiment C6, 59650 Villeneuve d’Ascq, France
Christian Rey
Affiliation:
École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques Cirimat-Ensiacet, Ensiacet 4 allée Émile Monso, BP44362, 31030 Toulouse cedex 4, France
Jean Michel
Affiliation:
Laboratoire de Recherche en Nanosciences LRN EA4682, UFR Sciences Université de Reims, 21, rue Clément Ader, 51685 Reims cedex 02, France
*
Get access

Abstract

The effect of electron beam irradiation of stoichiometric hydroxyapatite (Ca10(PO4)6(OH)2, HAP) is investigated using electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) mode equipped with a LaB6 gun. Initial irradiation at 160 A cm−2 dose rate shows no modification of the low loss spectra. No difference of mass loss for Ca, O and P is observed for two different probe diameters: 4 nm (dose rate = 160 A cm−2) and 24 nm (dose rate = 70 A cm−2). Furthermore no formation of CaO is observed for both experimental conditions. It is proposed that the low values of both electron dose rates and doses (from 350 to 2400 C cm−2) avoid mass loss. At the higher dose rate obtained with a field emission gun (FEG), transformations are observed for the lowloss signal as well as for the Ca, P and O signals. These results might be very useful for the future studies of apatite particles at the nanoscale.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sicher, H., Orban’s Oral Histology and Embryology (Mosby, Saint Louis, 1962)Google Scholar
Lakes, R., Nature 361, 511 (1993)CrossRef
Rey, C., Combes, C., Drouet, C., Sfihi, H., Barroug, A., Mater. Sci. Eng. C 27, 198 (2007)CrossRef
Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M., Elliott, J.C., Biomaterials 22, 2459 (2001)CrossRef
Eichert, D., Drouet, C., Sfihia, H., Rey, C., Combes, C., Nanocrystalline Apatite-Based Biomaterials (Nova, Science Publishers, New York, 2011)Google Scholar
Suvorova, E.I., Klechkovskaya, V.V., Komarov, V.F., Severin, A.V., Melikhov, I.V., Buffat, P.A., Crystallogr. Rep. 51, 881 (2006)CrossRef
Imanov, R.M., Klechkovskaya, V.V., Suvorova, E.I., Crystallogr. Rep. 56, 650 (2011)CrossRef
Brés, É.F., Cherns, D., Vincent, R., Morniroli, J.-P., Acta Crystallogr. B 49, 56 (1993)CrossRef
Aoba, T., Takahashi, J., Yagi, T., Okazaki, M., Moriwaki, Y., J. Dent. Res. 57, 708 (1978)CrossRef
Egerton, R.F., Li, P., Malac, M., Micron 35, 399 (2004)CrossRef
Bae, I.-T., Zhangn, Y., Weber, W.J., Ishimaru, M., Hirotsu, Y., Higuchi, M., Nucl. Instrum. Methods Phys. Res. B 266, 3037 (2008)CrossRef
Reyes-Gasga, J., Garcia-Garcia, R., Radiat. Phys. Chem. 64, 359 (2002)CrossRef
Nelson, D.G.A., McLean, J.D., Sanders, J.V., Radiation Effects Letters 68, 51 (1982)CrossRef
Reyes-Gasga, J., Garcia-Garcia, R., Brès, E.F., Physica B: Condens. Matter 404, 1867 (2009)CrossRef
Dong, Z.L., White, T.J., Sun, K., Wang, L.M., Ewing, R.C., J. Am. Ceram. Soc. 88, 184 (2005)CrossRef
Nicolopoulos, S., Gonzalez-Calbet, J.M., Alonso, M.P., Gutierrez-Rios, M.T., de Frutos, M.I., Vallet-Regi, M., J. Solid State Chem. 116, 265 (1995)CrossRef
Senger, B., Brès, E.F., Hutchison, J.L., Voegel, J.-C., Frank, R.M., Philos. Mag. A 65, 665 (1992)CrossRef
Brès, É.F., Moebus, G., Kleebe, H.J., Pourroy, G., Werkmann, J., Ehret, G., J. Cryst. Growth 129, 149 (1993)CrossRef
Brès, E.F., Hutchison, J.L., Senger, B., Voegel, J.-C., Ultramicros. 35, 305 (1991)CrossRef
Eddisford, P., Brown, A., Brydson, R., J. Phys.: Conf. Ser. 126, 012008 (2008)
Liou, S.Ch., Chen, S.Y., Lee, H.Y., Bow, J.S., Biomaterials 25, 189 (2004)CrossRef
Gregori, G., Kleebe, H.J., Mayra, H., Ziegler, G., J. Eur. Ceram. Soc. 26, 1473 (2006)CrossRef
Drevet, R., Benhayoune, H., Michel, J., Journal of Biomaterials and Tissue Engineering 1, 68 (2011)CrossRef
Heimanna, R.B., Wirth, R., Biomaterials 27, 823 (2006)CrossRef
Brès, É.F., Duhoo, T., Leroy, N., Lemaitre, J., Zeitschrift für Metallkunde 96, 503 (2005)CrossRef
Flower, R.M., Earth Planet. Sci. Lett. 277, 148 (2009)CrossRef
Meldrum, A., Wang, L.M., Ewing, R.C., Am. Mineral. 82, 858 (1997)CrossRef
Reyes-Gasga, J., Martinez-Piñeiro, E.L., Brès, É.F., J. Microsc. 248, 102 (2012)CrossRef
Reimer, L., Transmission Electron Microscopy, Springer Series in Optical Sciences (Springer, Berlin, 1984)CrossRefGoogle Scholar
Nelson, D.G.A., McLean, J.D., Calcif. Tissue Int. 36, 219 (1984)CrossRef