Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T18:12:38.976Z Has data issue: false hasContentIssue false

Preparation of Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics by reaction-sintering method and their electrical properties

Published online by Cambridge University Press:  15 February 2012

B.J. Fang*
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
C.L. Ding
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
J. Wu
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
Q.B. Du
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
J.N. Ding
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China Key Laboratory of New Energy Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
X.Y. Zhao
Affiliation:
Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences, Shanghai 201800, P.R. China
H.Q. Xu
Affiliation:
Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences, Shanghai 201800, P.R. China
H.S. Luo
Affiliation:
Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences, Shanghai 201800, P.R. China
Get access

Abstract

Pure phase perovskite relaxor-based (1 – x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT, x = 0.2–0.4) ferroelectric ceramics were prepared by the reaction-sintering method sintered at 1240–1250 °C. The synthesized ceramics exhibit rather homogeneous microstructure morphology and relatively high density. The content of PbTiO3 (PT) exerts successive influences on sintering capability, phase structure and electrical properties of the PMN-PT ceramics. With the increase of the PT content, the crystal structure of the PMN–PT ceramics changes gradually from the rhombohedral phase, across the coexistence of rhombohedral phase and tetragonal phase, and to the tetragonal phase, accompanied by the change of the dielectric response character from typical relaxor ferroelectrics to normal ferroelectrics. The morphotropic phase boundary (MPB) of the PMN–PT system is determined locating at x = 0.3–0.34 based on the structure analysis and the electrical properties measurements, in which the PMN–PT ceramics with the MPB composition exhibit enhanced microstructure and excellent electrical properties, especially superior piezoelectric properties.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shrout, T.R., Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987)
Swartz, S.L., Shrout, T.R., Mater. Res. Bull. 17, 1245 (1982)CrossRef
Slodczyk, A., Colomban, Ph., Pham-Thi, M., J. Phys. Chem. Solids 69, 2503 (2008)CrossRef
Zawilski, K.T., Custodio, M.C.C., DeMattei, R.C., Lee, S.-G., Monteiro, R.G., Odagawa, H., Feigelson, R.S., J. Cryst. Growth 258, 353 (2003)CrossRef
Slodczyk, A., Kania, A., Daniel, P., Ratuszna, A., J. Phys. D: Appl. Phys. 38, 2910 (2005)CrossRef
Kania, A., Slodczyk, A., Ujma, Z., J. Cryst. Growth 289, 134 (2006)CrossRef
Kania, A., Daniel, P.H., Slodczyk, A., Ferroelectrics 353, 481 (2007)CrossRef
Han, K.R., Kim, S., Koo, H.J., J. Am. Ceram. Soc. 81, 2998 (1998)CrossRef
Liou, Y.C., Tseng, K.H., Mater. Res. Bull. 38, 1351 (2003)CrossRef
Liou, Y.C., Mat. Sci. Eng. B 103, 281 (2003)CrossRef
Rao, R.M.V., Halliyal, A., Umarji, A.M., J. Am. Ceram. Soc. 79, 257 (1996)CrossRef
Ding, C., Fang, B., Du, Q., Zhou, L., Phys. Status Solidi A 207, 979 (2010)CrossRef
Chen, J.-H., Liou, Y.-C., Ceram. Int. 30, 157 (2004)CrossRef
Fang, B.-J., Du, Q.-B., Zhou, L.-M., Shen, Y.-H., Wang, J., Eur. Phys. J. Appl. Phys. 51, 10301 (2010)CrossRef
Fang, B., Sun, R., Shan, Y., Tezuka, K., Imoto, H., J. Phys. Chem. Solids 70, 893 (2009)CrossRef
Wongmaneerung, R., Rittidech, A., Khamman, O., Yimnirun, R., Ananta, S., Ceram. Int. 35, 125 (2009)CrossRef
Wen, X., Feng, C., Chen, L., Huang, S., Ceram. Int. 33, 815 (2007)CrossRef
Hench, L.L., West, J.K., Principles of Electronic Ceramics (John Wiley & Sons, Inc., New York, 1989), pp. 244272Google Scholar
Ye, Z.-G., Curr. Opin. Solid State Mater. Sci. 6, 35 (2002)CrossRef