Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T18:01:06.003Z Has data issue: false hasContentIssue false

Physical properties of two dimensional nets of quantum InGaAs wires

Published online by Cambridge University Press:  15 July 2004

L. K. Orlov*
Affiliation:
Lobachevsky State University, 23/3, Gagarin str., 603950 Nizhny Novgorod, Russia Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod, Russia
N. L. Ivina
Affiliation:
Lobachevsky State University, 23/3, Gagarin str., 603950 Nizhny Novgorod, Russia Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod, Russia
N. A. Alyabina
Affiliation:
Lobachevsky State University, 23/3, Gagarin str., 603950 Nizhny Novgorod, Russia Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod, Russia
Get access

Abstract

The objective of this work is to propose new low-dimensional systems such as two-dimensional nets of quantum wires. The preparation method is based on electrochemical etching of multilayer quantum structures, controlled by measurements of the photoluminescence spectra. Modification of the surface structure is also traced with scanning probe microscopy. The process of a porous structure formation in superlattices leads to additional spatial confinement in the InGaAs layer plane through it, to formation of two-dimensional (2D) nets of quantum wires, as well as transformation of two-dimensional (2D) energy spectra of electrons into one-dimensional (1D) spectra. This procedure was realized on structures with a single InGaAs layer and on multilayer periodic structures. Electrophysical measurements of the electron gas characteristics were carried out on porous structures with 2D nets of quantum wires.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Averkiev, N. C., Kasakova, L. P., Lebedev, E. A., Rud', Yu. V., Smirnov, A. N., Smirnova, N. N., Semiconductors 34, 757 (2000) CrossRef
Yu, D. P., Xing, Y. J., Hang, Q. L., Physica E 9, 305 (2001) CrossRef
Demidov, E. C., JETP Lett. 71, 351 (2000) CrossRef
Bogomolov, V. N., Zadorozhny, A. I., Pavlova, T. M., Petranovsky, V. P., Podchaluzin, V. P., Xolkin, A. L., JETP Lett. 31, 406 (1980)
Orlov, L. K., Ivina, N. L., JETP Lett. 75, 492 (2002) CrossRef
Orlov, L. K., Ivina, N. L., Rubtsova, R. A., Romanov, Yu. A., Solid State Phys. 42, 548 (2000) CrossRef
Yu. N. Busynin, C. A. Gusev, Yu. N. Drozdov, Z. F. Krasil'nic, A. M. Murel, V. N. Shashkin, I. V. Shuleshova, Surf. X-Ray, Synchrotron and Neutron Invest. 5, 40 (1996)
Orlov, L. K., Ivina, N. L., Drozdov, Yu. N., Alyabina, N. A., Techn. Phys. Lett. 28, 1018 (2002) CrossRef
J. Voit. Rep. Prog. Phys. 58, 977 (1995)
Haldane, F. D. M., J. Phys. C: Solid State Phys. 14, 2585 (1981) CrossRef