Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T17:10:04.515Z Has data issue: false hasContentIssue false

Ozone decay on stainless steel and sugarcane bagasse surfaces

Published online by Cambridge University Press:  05 July 2013

Jorge A. Souza-Corrêa
Affiliation:
Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
Carlos Oliveira
Affiliation:
Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
Jayr Amorim*
Affiliation:
Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil
*
Get access

Abstract

Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10−8 for stainless steel and (2.0 ± 0.3) × 10−7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, C.X., Qiu, Y.P., Surf. Coat. Technol. 201, 6273 (2007)CrossRef
Karahan, H.A., Özdoğan, E., Fiber. Polym. 9, 21 (2008)CrossRef
Song, C.-L., Zhang, Z.-T., Chen, W.-Y., Liu, C., IEEE Trans. Plasma Sci. 37, 1817 (2009)CrossRef
Karaca, H., Velioglu, Y.S., Food Rev. Int. 23, 91 (2007)CrossRef
Rice, R.G., Ozone: Sci. Eng. 18, 477 (1996)CrossRef
Binder, A., Pelloni, L., Fiechter, A., Eur. J. Appl. Microbiol. Biotech. 11, 1 (1980)CrossRef
Ben-Ghedalia, D., Shefet, G., Miron, J., J. Sci. Food Agric. 31, 1337 (1980)CrossRef
Mbachu, R.A.D., Manley, R.S.J., J. Polym. Sci. A 19, 2053 (1981)
Vidal, P.F., Molinier, J., Biomass 16, 1 (1988)CrossRef
Kwon, J.-Y., Chung, P.-G., Lim, I.-H., J. Environ. Sci. Health A: Tox. Hazard. Subst. Environ. Eng. 39, 1853 (2004)CrossRef
Schultz-Jensen, N., Leipold, F., Bindslev, H., Thomsen, A.B., Appl. Biochem. Biotech. 163, 558 (2011)CrossRef
Schultz-Jensen, N., Kádár, Z., Thomsen, A.B., Bindslev, H., Leipold, F., Appl. Biochem. Biotech. 165, 1010 (2011)CrossRef
Pontiga, F., Soria, C., Castellanos, A., in Report of the 2004 Annual Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Boulder, Colorado, USA, 2004) p. 568Google Scholar
Yanallah, K., Ziane, S.H., Belasri, A., Plasma Devices Oper. 14, 215 (2006)CrossRef
Horvath, G., Skalny, J.D., Orszagh, J., Vladoiu, R., Mason, N.J., Plasma Chem. Plasma Process. 30, 43 (2010)CrossRef
Itoh, H., Suzuki, T., Suzuki, S., Rusinov, I.M., Ozone: Sci. Eng. 26, 487 (2004)CrossRef
Taguchi, M., Yamashiro, K., Takano, T., Itoh, H., Plasma Processes Polym. 4, 719 (2007)CrossRef
Taguchi, M., Ochiai, Y., Kawagoe, R., Kato, Y., Teranishi, K., Suzuki, S., Itoh, H., Eur. Phys. J. Appl. Phys. 55, 13805 (2011)CrossRef
Eliasson, B. Kogelschatz, U. Technical Report KLR 86-11 C, ASEA, Brown Boveri, 1986Google Scholar
Orphal, J., J. Photoch. Photobio. A 157, 185 (2003)CrossRef
Gousset, G., Panafieu, P., Touzeau, M., Vialle, M., Plasma Chem. Plasma Process. 7, 409 (1987)CrossRef