Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:25:01.209Z Has data issue: false hasContentIssue false

Orange avalanche upconversion for high-resolution laser spectroscopy

Published online by Cambridge University Press:  17 January 2007

Ph. Goldner*
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, École Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
O. Guillot-Noël
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, École Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
G. Dantelle
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, École Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
M. Mortier
Affiliation:
Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, École Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
T. H. My
Affiliation:
Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505, Campus d'Orsay, 91405 Orsay, France
F. Bretenaker
Affiliation:
Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505, Campus d'Orsay, 91405 Orsay, France
Get access

Abstract

High resolution spectroscopy of quantum systems is a key point in the quantum information field. Rare earth ions in crystals are interesting candidates for this application because of the long coherence lifetime of some of their transitions. These ions can also be manipulated by optical excitation which has, however, to be produced by ultra-stable laser sources. This proves to be a very difficult task in the case of dye lasers which are necessary to excite Pr3+ doped crystals and especially Pr3+:Y2SiO5. This compound is by far the most used host in rare earth based quantum information studies. In this paper, we discuss the use of Pr3+,Yb3+ codoped materials to build an infrared pumped solid state laser suitable to excite Pr3+:Y2SiO5 around 606 nm. We show by the analysis of a rate equation model that avalanche upconversion is not very efficient to obtain a high power laser. This is more easily obtained if a second laser is set to pump resonantly Yb3+ ions. The spectroscopic properties of a new matrix Pr3+,Yb3+:PbF2 are also investigated. We found that this compound emits at 606.18 nm with a width of 5 nm and would be therefore suitable to excite Pr3+:Y2SiO5. Moreover, it can be excited at 857 nm and 975 nm, i.e. in the range of high power laser diodes.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)
Ohlsson, N., Mohan, R.K., Kroll, S., Opt. Commun. 201, 71 (2002) CrossRef
J.J. Longdell, M.J. Sellars, N.B. Manson, Phys. Rev. Lett. 93, 130503/1 (2004)
Rippe, L., Nilsson, M., Kroll, S., Klieber, R., Suter, D., Phys. Rev. A 71, 62328 (2005) CrossRef
J.J. Longdell, E. Fraval, M.J. Sellars, N.B. Manson, Phys. Rev. Lett. 95, 063601/1 (2005)
Sellars, M.J., Meltzer, R.S., Fisk, P.T.H., Manson, N.B., J. Opt. Soc. Am. B 11, 1468 (1994) CrossRef
Mitsunaga, M., Uesugi, N., Sugiyama, K., Opt. Lett. 18, 1256 (1993) CrossRef
Klieber, R., Michalowski, A., Neuhaus, R., Suter, D., Phys. Rev. B 67, 184103 (2003) CrossRef
Laporta, P., Taccheo, S., Longhi, S., Svelto, O., Svelto, C., Opt. Mat. 11, 269 (1999) CrossRef
Bahbah, S., Bretenaker, F., Drag, C., Opt. Lett. 31, 1283 (2006) CrossRef
Osiac, E., Heumann, E., Huber, G., Kuck, S., Sani, E., Toncelli, A., Tonelli, M., Appl. Phys. Lett. 82, 3832 (2003) CrossRef
Koch, M.E., Kueny, A.W., Case, W.E., Appl. Phys. Lett. 56, 1083 (1990) CrossRef
Joubert, M.F., Opt. Mat. 11, 181 (1999) CrossRef
Gosnell, T.R., Electron. Lett. 33, 411 (1997) CrossRef
S. Kuck, A. Diening, E. Heumann, E. Mix, T. Sandrock, K. Sebald, G. Huber, J. Alloy. Compd. 300, 301, 65 (2000)
Zeller, M., Limberger, H.G., Lasser, T., IEEE Photonic. Tech. L 15, 194 (2003) CrossRef
Dantelle, G., Mortier, M., Patriarche, G., Vivien, D., J. Solid State Chem. 179, 1995 (2006) CrossRef
Osiac, E., Kuck, S., Heumann, E., Huber, G., Sani, E., Toncelli, A., Tonelli, M., Opt. Mater. 24, 537 (2003) CrossRef
V. Lupei, E. Osiac, T. Sandrock, E. Heumann, G. Huber, J. Lumin. 76, 77, 441 (1998)
Ph. Goldner, F. Pelle, Opt. Mater. 5, 239 (1996) CrossRef
Auzel, F., Phys. Rev. B 13, 2809 (1976) CrossRef
Toncelli, A., Tonelli, M., Cassanho, A., Jenssen, H.P., J. Lumin. 82, 291 (1999) CrossRef
Garapon, C., Malinovski, M., Joubert, M.F., Kaminskii, A.A., Jacquier, B., J. Phys. IV France 4, C4 (1994) CrossRef
Antipenko, B.M., Opt. Spectrosc. 56, 44 (1984)
Schuurmans, M.F.H., van Dijk, J.M.F., Physica B 123, 131 (1984) CrossRef
Gerasimov, K.I., Leushin, A.M., Falin, M.L., Phys. Solid State 43, 1675 (2001) CrossRef
Dantelle, G., Mortier, M., Goldner, Ph., Vivien, D., J. Phys.- Condens. Matter 18, 7905 (2006) CrossRef
DeLoach, L.D., Payne, S.A., Chase, L.L., Smith, L.K., Kway, W.L., Krupke, W.F., IEEE J. Quantum Elect. 29, 1179 (1993) CrossRef
Ito, M., Goutaudier, C., Guyot, Y., Lebbou, K., Fukuda, T., Boulon, G., J. Phys.-Condens. Matter 16, 1501 (2004) CrossRef
Equall, R.W., Cone, R.L., Macfarlane, R.M., Phys. Rev. B 52, 3963 (1995) CrossRef
W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Tech. rep., USA: Argonnne National Laboratory, 1977