Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T17:36:39.038Z Has data issue: false hasContentIssue false

Optimisation of an asymmetric three phase-shift distributed feedback semiconductor laser

Structure concerning the above-threshold stability

Published online by Cambridge University Press:  22 April 2009

C. A. F. Fernandes
Affiliation:
Optical Communications Group, Instituto de Telecomunicações, Av. Rovisco Pais, 1049–001 Lisboa, Portugal
J. A. P. Morgado*
Affiliation:
Optical Communications Group, Instituto de Telecomunicações, Av. Rovisco Pais, 1049–001 Lisboa, Portugal Portuguese Air Force Academy, Grânja do Marquês, 2715-021 Sintra, Portugal
J. B. M. Boavida
Affiliation:
Optical Communications Group, Instituto de Telecomunicações, Av. Rovisco Pais, 1049–001 Lisboa, Portugal
Get access

Abstract

This paper shows that accurately optimised asymmetric three phase-shift (3PS)-distributed feedback (DFB) laser structures can strongly improve the stability of the single-longitudinal mode (SLM) operation, described by the mode selectivity and the flatness of the photon density profile, through an extended range of current injection, when compared to optimised symmetric 3PS-DFB structures reported elsewhere.This study reveals its importance in modern high bit-rate optical communication systems, by enhancing the possibility of attaining high performance DFB lasers, in easily fabricated structures.The procedure, based on matrix techniques, aims at the description of the optimal design of the laser structure and it is described step-by-step.Above-threshold calculations have been accomplished to evaluate the performance of the optimised asymmetric 3PS-DFB structure, namely: the mode selectivity ( $G$ ), the flatness, the lasing wavelength, the optical power, and the side-mode suppression ratio (SMSR) evolutions with the current injection. For a current injection five times bigger than the threshold current, substantially improvements in $G$ (five times bigger) and in the SMSR (about 9 dB higher) are achieved when compared to similar, but symmetric, DFB structures.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sato, K., Kuwahara, S., Miyamoto, Y., IEEE/OSA J. Lightw. Technol. 23, 3790 (2005) CrossRef
B. Wedding, W. Pöhlmann, in Proc. 30th European Conf. Optical Communication (ECOC'04), Stockholm, Sweden, 2004, Paper We 2.6.6
B. Wedding, W. Pöhlmann, H. Gross, O. Thalau, in Proc. 29th European Conf. Optical Communication (ECOC'03), Rimini, Italy, 2003
G. Morthier, P. Vankwikelberge, Handbook of Distributed Feedback Laser Diodes (Artech House, Norwood, USA, 1997)
G. Agrawal, N. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, USA, 1993)
H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (John Wiley & Sons, Chichester, UK, 2003)
Fessant, T., Appl. Phys. B 67, 769 (1998) CrossRef
G. Agrawal, Fiber-Optic Communication Systems, edited by K. Chang, 3rd edn. (John Wiley & Sons, New York, USA, 2002)
Kapon, E., Hardy, A., Katzir, A., IEEE J. Quant. Electron. 18, 66 (1982) CrossRef
David, K., Buus, J., Baets, R.G., IEEE J. Quant. Electron. 28, 427 (1992) CrossRef
Agrawal, G., Gensic, J., Anthony, P., Appl. Phys. Lett. 53, 178 (1988) CrossRef
Ogita, S., Kotaki, Y., Matsuda, M., Kuwahara, Y., Ishikawa, H., IEEE/OSA J. Lightw. Technol. 25, 629 (1989)
Ogita, S., Kotaki, Y., Ishikawa, H., Imai, H., Electron. Lett. 24, 731 (1988) CrossRef
Fessant, T., IEE Proc. Optoelectron. 144, 365 (1997) CrossRef
Fessant, T., Appl. Phys. B 67, 769 (1998) CrossRef
Morthier, G., David, K., Vankwikelberge, P., Baets, R., IEEE Photon. Technol. Lett. 2, 388 (1990) CrossRef
Kimura, T., Sugimura, A., Electron. Lett. 23, 1014 (1987) CrossRef
Agrawal, G., Bobeck, A., IEEE J. Quant. Electron. 24, 2407 (1988) CrossRef
Bastard, L., Broquin, J., Integrated Optics Devices, Materials and Technologies IX: Proc. SPIE 5728, 136 (2005)