Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T10:26:27.886Z Has data issue: false hasContentIssue false

Optical and electrical properties of pure and Ni-modified ZnS nanocrystals

Published online by Cambridge University Press:  21 October 2010

Arfat Firdous*
Affiliation:
Department of Physics, National Institute of Technology, Hazratbal, Srinagar, 190006J&K, India
Get access

Abstract

ZnS and Ni doped ZnS nanoparticles were synthesized through chemical precipitation method using a high-boiling solvent. The nanocrystillanity of the prepared nanostructures is confirmed by X-ray diffraction (XRD). The mean crystal size obtained by full width half maxima (FWHM) analysis is 3.2 nm for ZnS and 4.3 nm for ZnS:Ni. An optical absorption study conducted in UV-vis range 150–800 nm reveals the transparency of these nanocrystals in entire visible range but not in ultraviolet range. The results based on optical analysis yield band gap values as 3.92 eV for ZnS and 3.88 eV for ZnS:Ni nanoparticles. The electrical resistivity data reveals semiconducting behaviour to both compositions. Fitting of resistivity data in Mott's variable range hopping model (VRH) shows that nickel (1.5%) doping in ZnS reduces gap parameters from 4.78 to 4.22 eV. Based on this model the carrier density, energy gap and hopping distances are calculated for both pure and Ni modified nanocrystals.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alivisatos, A.P., J. Phys. Chem. 100, 13226 (1996) CrossRef
Pool, R., Science 248, 1186 (1990) CrossRef
Chen, S., Liu, W., Mater. Res. Bull. 36, 137 (2001) CrossRef
Brus, L., Appl. Phys. A 53, 465 (1991) CrossRef
Alivisatos, A.P., Science 271, 933 (1996) CrossRef
Jayanthi, K., Chawla, S., Chander, H., Haranath, D., Cryst. Res. Technol. 42, 976 (2007) CrossRef
Hebalkar, N., Lodo, A., Sainkar, S.R., J. Mater. Sci. 36, 4377 (2001) CrossRef
S.C. Qu, W.H. Zhou, F.Q. Liu, N.F. Chen, Z.G. Wang, H.Y. Pan, D.P. Yu, Appl. Phys. Lett. 80, (2002)
Ishizumia, A., White, C.W., Kanemitsu, Y., Physica E 26, 24 (2005) CrossRef
Colvin, V.L., Schlamp, M.C., Alivisatos, A.P., Nature 370, 354 (1994) CrossRef
Yang, P., Lu, M., Xu, D., Yuan, D., Zhou, G., Appl. Phys. A 73, 455 (2001) CrossRef
Liu, S.M., Guo, H.Q., Zhang, Z.H., Liu, F.Q., Wang, Z.G., Chin. Phys. Lett. 17, 609 (2000)
Papakonstantinou, D.D., Huang, J., Lianos, P., J. Mater. Sci. Lett. 17, 1571 (1998) CrossRef
Xu, S.J., Chua, S.J., Liu, B., Gan, L.M., Chew, C.H., Xu, Q.Q., Appl. Phys. Lett. 73, 478 (1998) CrossRef
Trindade, T., Brien, P.O., J. Mater. Chem. 6, 343 (1996) CrossRef
Trindade, T., Brien, P.O., Adv. Mater. 8, 161 (1996) CrossRef
Artemev, M.V., Sperling, V., Woggen, U., J. Appl. Phys. 81, 6975 (1997) CrossRef
Yang, H., Holloway, P.H., J. Phys. Chem. 107, 9705 (2003) CrossRef
Yang, Y., Huang, J., Yang, B., Liu, S., Shen, J., Synth. Met. 91, 347 (1997) CrossRef
Tong, H., Zhu, Y., Nanotechnology 17, 845 (2006) CrossRef
Rakshani, A.E., Al-Azab, A.S., Appl. Phys. A 73, 631 (2001) CrossRef
Ashour, A., J. Mater. Sci. Mater. Electron. 5, 47 (1994) CrossRef
Xiao, Q., Xiao, C., Appl. Phys. Sci. 254, 6432 (2008)
Kayanuma, Y., Phys. Rev. B 38, 9797 (1998) CrossRef
Oulid, J., Sarti, D., Gervais, J., Matinuzzi, S., J. Phys. C 12, 2313 (1979) CrossRef
Comparelli, R., Zezza, F., Striccoli, M., Curri, M.L., Tommasi, R., Agostiano, A., Mater. Sci. Eng. C 23, 1083 (2003) CrossRef
Cheung, H.Y., Lau, K.T., Zhao, Y.Q., Adv. Mater. Res. 47-50, 1213 (2008) CrossRef
Herron, N., Wang, Y., Eckert, H., J. Am. Chem. Soc. 112, 1322 (1990) CrossRef
Lakshmi, P.V.B., Raj, K.S., Ramachandran, K., Cryst. Res. Technol. 44, 153 (2009) CrossRef
Cho, S., Ma, J., Kim, Y., Sun, Y., Womg, G.K.L., Appl. Phys. Lett. 75, 2761 (1999) CrossRef
Mott, N.F., J. Non-Cryst. Solids 1, 1 (1968) CrossRef