Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T11:29:13.847Z Has data issue: false hasContentIssue false

Numerical simulation on dielectric enhancement of periodic composite media using a 3D finite difference method

Published online by Cambridge University Press:  29 September 2010

M. Luo
Affiliation:
Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, P.R. China
C. Liu
Affiliation:
Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
H. P. Pan*
Affiliation:
Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, P.R. China
Get access

Abstract

It has been observed in many cases that the effective dielectric constant of some general composite media can reach as high as thousands at low frequency side. In this paper, a numerical method is used to simulate this phenomenon and study the parameters which could affect the dielectric spectrum. In order to obtain the effective dielectric constant and conductivity of the composite and understand the dominant factors of large dielectric enhancement of low frequency side, a three-dimensional finite difference method (3D-FDM) is used to simulate general mixtures and mixtures with membrane structure. A special FDM grid is introduced to handle the membrane that coats the inclusions of the composite medium. We analyze the influence of the membrane thickness, membrane conductivity, inclusion insertion ratio, and inclusion shape on the effective dielectric constant and conductivity of the composite. The results show that: (1) the low-conductivity membrane may be the cause of the dielectric enhancement of low frequency side; (2) the membrane thickness, membrane conductivity, and inclusion insertion ratio can affect the dielectric enhancement level significantly; and (3) the physics of the dielectric enhancement is probably related to the frequency dependence of the effective plate separation of the capacitor model.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pethig, R., Kell, D.B., Phys. Med. Biol. 32, 933 (1987) CrossRef
Asami, K., J. Phys. D: Appl. Phys. 40, 3718 (2007) CrossRef
Ahualli, S., Jiménez, M.L., Delgado, A.V., Arroyo, F.J., Carrique, F., IEEE Trans. Dielectr. Electr. Insul. 13, 657 (2006) CrossRef
Kamba, S., Bovtun, V., Petzelt, J., Rychetsky, I., Mizaras, R., Brilingas, A., Banys, J., Grigas, J., Kosec, M., J. Phys.: Condens. Matter. 12, 497 (2000)
Shen, M., Ge, S., Cao, W., J. Phys. D: Appl. Phys. 34, 2935 (2001) CrossRef
Furukawa, T., Yasuda, K., Takahashi, Y., IEEE Trans. Dielectr. Electr. Insul. 11, 65 (2004) CrossRef
Sengwa, R.J., Soni, A., Geophysics 71, G269 (2006) CrossRef
H.P. Schwan, Advances in Biological and Medical Physics, edited by J.H. Lawrence, C.A. Tobias (Academic Press, New York, 1957)
K.R. Foster, H.P. Schwan, Handbook of Biological Effects of Electromagnetic Fields, edited by C. Polk, E. Postow (CRC Press, New York, 1996)
Schwan, H.P., Adv. Biol. Med. Phys. 5, 147 (1957) CrossRef
Schwan, H.P., Schwarz, G., Maczuk, J., Pauly, H., J. Phys. Chem. 66, 2626 (1962) CrossRef
Schwarz, G., J. Phys. Chem. 66, 2636 (1962) CrossRef
Thevanayagam, S., J. Appl. Phys. 82, 2538 (1997) CrossRef
Rusiniak, L., Geophys. J. Int. 148, 313 (2002)
Maxwell, G.J.C., Philos. Trans. R. Soc. Lond. A 3, 385 (1904)
Bruggeman, D., Ann. Phys. 24, 636 (1935) CrossRef
T. Hanai, Electrical properties of emulsions, edited by P. Sherman (Academic Press, New York, 1968)
G.W. Milton, The theory of composites (Cambridge University Press, Cambridge, 2002)
Lu, J., Wong, C.P., IEEE Trans. Dielectr. Electr. Insul. 15, 1322 (2008)
Serdyuk, Y.V., Podoltsev, A.D., Gubanski, S.M., IEEE Trans. Dielectr. Electr. Insul. 11, 379 (2004) CrossRef
Kärkkäinen, K., Sihvola, A., Nikoskinen, K., IEEE Trans. Geosci. Remote Sens. 39, 1013 (2001) CrossRef
Calame, J.P., J. Appl. Phys. 94, 5945 (2003) CrossRef
Tuncer, E., Serdyuk, Y.V., Gubanski, S.M., IEEE Trans. Dielectr. Electr. Insul. 9, 809 (2002) CrossRef
Krakovský, I., Myroshnychenko, V., J. Appl. Phys. 92, 6743 (2002) CrossRef
Sekine, K., Colloid Polym. Sci. 277, 388 (1999) CrossRef
Zhao, X., Wu, Y., Fan, Z., Li, F., J. Appl. Phys. 95, 8110 (2004) CrossRef
Jylhä, L., Sihvola, A.H., IEEE Trans. Geosci. Remote Sens. 43, 59 (2005) CrossRef
Ghosh, P.K., Azimi, M.E., IEEE Trans. Dielectr. Electr. Insul. 1, 975 (1994) CrossRef
Brosseau, C., Beroual, A., Eur. Phys. J. Appl. Phys. 6, 23 (1999) CrossRef
Sekine, K., Bioelectrochemistry 52, 1 (2000) CrossRef
Sekine, K., Torii, N., Kuroda, C., Asami, K., Bioelectrochemistry 57, 83 (2002) CrossRef
Kärkkäinen, K., Sihvola, A., Nikoskinen, K., IEEE Trans. Geosci. Remote Sens. 38, 1303 (2000) CrossRef
Wu, D., Chen, J., Liu, C., J. Appl. Phys. 102, 024107 (2007) CrossRef
Kuga, Y., Lee, S.W., Taya, M., Almajid, A., IEEE Trans. Dielectr. Electr. Insul. 12, 827 (2005) CrossRef
Asami, K., J. Phys. D: Appl. Phys. 39, 492 (2006) CrossRef
Chelidze, T., Gueguen, Y., Geophys. J. Int. 137, 1 (1999) CrossRef
Pauly, H., Schwan, H.P., Z. Naturforsch. B 14, 125 (1959) CrossRef
Wagner, K.W., Arch. Electrotech. 2, 371 (1924) CrossRef