Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T09:25:58.379Z Has data issue: false hasContentIssue false

The node distribution for meshless methods*

Published online by Cambridge University Press:  15 August 2001

C. Hérault
Affiliation:
Laboratoire d'Électotechnique de Grenoble, ENSIEG (INPG-UJF, CNRS UMR 5529), BP 46, 38402 Saint-Martin-d'Hères Cedex, France
V. Leconte
Affiliation:
Laboratoire d'Électotechnique de Grenoble, ENSIEG (INPG-UJF, CNRS UMR 5529), BP 46, 38402 Saint-Martin-d'Hères Cedex, France
Y. Maréchal*
Affiliation:
Laboratoire d'Électotechnique de Grenoble, ENSIEG (INPG-UJF, CNRS UMR 5529), BP 46, 38402 Saint-Martin-d'Hères Cedex, France
G. Meunier
Affiliation:
Laboratoire d'Électotechnique de Grenoble, ENSIEG (INPG-UJF, CNRS UMR 5529), BP 46, 38402 Saint-Martin-d'Hères Cedex, France
Get access

Abstract

Meshless methods are new numerical simulation methods. Meshless methods are based on a simple set of nodes that has to be optimized to obtain a good convergence of the approximation. For these reasons, in this paper, we have developed a new procedure in order to generate the initial set of nodes. This approach does not rely on any existing meshing technique, such as Delaunay or advancing front. It is based on a map density of nodes and a regularization procedure.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been presented at NUMELEC 2000.

References

Maréchal, Y., Hérault, C., Rev. Int. Génie Électr. 1, 99 (1998).
C. Armando Duarte, J.T. Oden, A review of Some Meshless Methods to Solve Partial Differential Equations, Texas Institute for Computational and Applied Mathematics, rapport 96-06, 1996.
Hérault, C., Maréchal, Y., Boundary and interface conditions in meshless methods, CEFC 1998, IEEE Trans. Magn. 35, 1450 (1999). CrossRef
Hermeline, F., RAIRO, Anal. Num. 13, 211 (1982).
George, P.L., Hecht, F., Saltel, E., Comp. Methods Appl. Mech. Eng. 92, 269 (1992). CrossRef
Shimada, K., Gossard, D.C., Comput. Aided Geom. Des. 15, 199 (1998). CrossRef
M. Desbrun, M.-P. Gascuel, Smoothed Particles: A new paradigm for animating highly deformable body, http://www-imagis.imag.fr/ Mathieu. Desbrun/smoothed.html.