Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:32:42.506Z Has data issue: false hasContentIssue false

Nickel on porous silicon MSM photo-detector and quantum confinement in nanocrystallites structure as methods to reduce dark current

Published online by Cambridge University Press:  05 March 2013

Mokhtar Zerdali*
Affiliation:
Laboratoire de Microscopie Electronique & Sciences des Matériaux (LME&SM), Université des Sciences et de la Technologie d’Oran (USTO), BP 1505, El MNaouer 31100, Usto, Oran, Algeria
F. Bechiri
Affiliation:
Laboratoire de Microscopie Electronique & Sciences des Matériaux (LME&SM), Université des Sciences et de la Technologie d’Oran (USTO), BP 1505, El MNaouer 31100, Usto, Oran, Algeria
I. Rahmoun
Affiliation:
Laboratoire de Microscopie Electronique & Sciences des Matériaux (LME&SM), Université des Sciences et de la Technologie d’Oran (USTO), BP 1505, El MNaouer 31100, Usto, Oran, Algeria
M. Adnane
Affiliation:
Laboratoire de Microscopie Electronique & Sciences des Matériaux (LME&SM), Université des Sciences et de la Technologie d’Oran (USTO), BP 1505, El MNaouer 31100, Usto, Oran, Algeria
T. Sahraoui
Affiliation:
Laboratoire de Microscopie Electronique & Sciences des Matériaux (LME&SM), Université des Sciences et de la Technologie d’Oran (USTO), BP 1505, El MNaouer 31100, Usto, Oran, Algeria
S. Hamzaoui
Affiliation:
Laboratoire de Microscopie Electronique & Sciences des Matériaux (LME&SM), Université des Sciences et de la Technologie d’Oran (USTO), BP 1505, El MNaouer 31100, Usto, Oran, Algeria
*
Get access

Abstract

We propose in this work, contact Schottky Nickel/porous silicon (PSi) system, coupled to nanocrystallites size variation of material for a possible technique to reduce dark current. The device consists of metal- semiconductor-metal photodiode (MSM-PD). Higher barrier ΦΒ enhances the performance of MSM-PD through reduction in dark current (Is), and benefits to resolve noise from signal detection of the devices. In order to reduce much more Is, we proposed different anodization times (5–7–10 min) as method to tune the size of nanocrystallites. As result Is value was reduced to almost two orders of magnitude for 10 min etching time, and the value of Is ≈ 10–10 A. ΦΒ reached the value of 0.882 eV. Among the hypothesis suggested in the reduction of Is was the quantum confinement effects. According to Rhoderick model, the Schottky barrier height is explicitly linked to the band gap energy due to the presence of interface states. The existence of narrow nanocrystallites increased energy band gap of PSi and the Schottky barrier height, which in turn reduces Is. The photoluminescence measurements confirmed our hypothesis. Photosensitivity of the device was established by adopting the MSM configuration, and strong absorption was detected in visible range.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Szentpali, B.L., Mohacsy, T., Barsony, I., Curr. Appl. Phys. 6, 174 (2006)CrossRef
Zhao, Y., Li, D.-S., Zhao, J., Sang, W.-B., Yang, D.-R., Jiang, M.-H., Curr. Appl. Phys. 8, 206 (2008)CrossRef
Iyengar, V.V., Nayak, B.K., Gupta, M.C., Solar Energy Mater. Solar Cells 94, 2251 (2010)CrossRef
Ben Rabha, M., Bessais, B., Sol. Energy 84, 486 (2010)CrossRef
Rajabi, M., Dariani, R.S., J. Porous Mater. 16, 513 (2009)CrossRef
Torres, J., Martinez, H.M., Alfonso, J.E., Lopez C., L.D., Microelectronics 39, 482 (2008)CrossRef
Dubey, R.S., Gautam, D.K., Opt Quant. Electron 41, 189 (2009)CrossRef
Ben Achour, Z., Touayar, O., Akkari, E., Bastie, J., Bessais, B., Ben Brahim, J., Nucl. Instrum. Methods Phys. Res. A 579, 1117 (2007)CrossRef
Bakir, M., Chui, C., Okyay, A., Sarawast, K., Meindi, J., IEEE Trans. Electron Devices 51, 1084 (2004)CrossRef
Siegert, M., Loken, M., Glingener, C., Buchal, C., IEEE J. Sel. Top. Quantum Electron. 4, 97 (1998)CrossRef
Xie, F., Lu, H., Xiu, X.Q., Chen, D.J., Han, P., Zhang, R., Zheng, Y.D., Solid-State Electron. 57, 39 (2011)CrossRef
Jandow, N.N., Yam, E.K., Thahab, S.M., Abu Hassan, H., Ibrahim, K., Curr. Appl. Phys. 10, 1452 (2010)CrossRef
Nazrul Islam, Md., Ram, S.K., Kumar, S., J. Phys. D: Appl. Phys. 40, 5840 (2007)CrossRef
Khalili, H., Dariani, R.S., MortezaAli, A., Daadmehr, V., Robbie, K., J. Mater. Sci. 42, 908 (2007)CrossRef
Abd Rahim, A.F., Hashim, M.R., Ali, N.K., Physica B 406, 1034 (2011)CrossRef
Afandiyeva, I.M., Dokme, I., Altindal, S., Abdullayeva, L.K., Askerov, S.G., Microelectron. Eng. 85, 365 (2008)CrossRef
Sze, S.M., Ng, K.K., Physics of Semiconductor Devices 3rd edn. (John Wiley & Sons, Inc, 2007), p. 179Google Scholar
Korucu, D., Mammadov, T.S., Ozcelik, S., J. Ovonic Res. 4, 159 (2008)
Cheung, S.K., Cheung, N.W., Appl. Phys. Lett. 49, 85 (1986)CrossRef
Rhoderick, E.H., Williams, R.H., Metal Semiconduuctor Contacts (Clarendon Press, Oxford, UK, 1988), pp. 20, 48, 99Google Scholar
Card, H.C., Rhoderick, E.H., J. Phys. 4, 1589 (1971)
Mott, N.F., Proc. Cambridge Philos. Soc. 34, 568 (1938)CrossRef
Bardeen, J., Phys. Rev. 71, 717 (1947)CrossRef
Sze, S.M., Ng, K.K., Physics of Semiconductor Devices 3rd edn. (John Wiley & Sons, Inc, 2007), p. 142Google Scholar
Biber, M., Turut, A., J. Electron. Mater. 31, 1366 (2002)CrossRef
Tsybeskov, L., Vandyshe, Ju. V., Fauchet, P.M., Phys. Rev. B 49, 7821 (1994)CrossRef
Bessais, B., Ezzaouia, H., Boujmil, M.F., Ben Younes, O., Elhouichet, H., Chihi, A., J. Porous Mater. 7, 311 (2000)CrossRef
Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)CrossRef
Lehmann, V., Gosele, U., Appl. Phys. Lett. 58, 856 (1991)CrossRef
Anto Pradeep, J., Gogoi, P., Agarwal, P., J. Non-Cryst. Solids 354, 2544 (2008)CrossRef
Lockwood, D.J., Schmuki, P., Labbé, H.J., Fraser, J.W., Physica E: Low-Dimens. Syst. Nanostruct. 4, 102 (1999)CrossRef
Zunger, A., Wang, L.-W., Appl. Surf. Sci. 102, 350 (1996)CrossRef