Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T17:12:41.410Z Has data issue: false hasContentIssue false

Mutual phase locking of very nonidentical spin torque nanooscillators via spin wave interaction

Published online by Cambridge University Press:  01 August 2014

Ansar R. Safin*
Affiliation:
National Research University “Moscow Power Engineering Institute”, 112250 Moscow, Russia
Nicolay N. Udalov
Affiliation:
National Research University “Moscow Power Engineering Institute”, 112250 Moscow, Russia
Mikhail V. Kapranov
Affiliation:
National Research University “Moscow Power Engineering Institute”, 112250 Moscow, Russia
*
Get access

Abstract

In this paper the mutual phase locking theory of very nonidentical spin-torque nanooscillators, which is based on the Slavin-Tiberkevich model, considering the theory of nonlinear oscillations, is developed. Using generalized Adler equation we calculate phase-locking region of the system with spinwave coupling in the parameter plane - distance between nanocontacts and radii difference. We describe trajectories of such a system in the phase space and show the effect of a broadband synchronization. We introduce a generalization of this approach to the ensembles of spin-torque nanooscillators.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Slonczewski, J.C., J. Magn. Magn. Mater. 159, L1 (1996)CrossRef
Berger, L., Phys. Rev. B 54, 9353 (1996)CrossRef
Slavin, A., Tiberkevich, V., IEEE Trans. Magn. 45, 1875 (2009)CrossRef
Grollier, J., Cros, V., Fert, A., Phys. Rev. B 73, 060409(R) (2006)CrossRef
Georges, B., et al., Appl. Phys. Lett. 92, 232504 (2008)CrossRef
Tiberkevich, V., et al., Appl. Phys. Lett. 95, 262505 (2009)CrossRef
Pikovsky, A., Phys. Rev. E 88, 032812 (2013)CrossRef
Kaka, S., et al., Nature 437, 389 (2005)CrossRef
Mancoff, F.B., et al., Nature 437, 393 (2005)CrossRef
Puffal, M.R., Rippard, W.H., Russek, S.E., Phys. Rev. Lett. 97, 087206 (2006)CrossRef
Slavin, A.N., Tiberkevich, V.S., Phys. Rev. B 74, 104401 (2006)CrossRef
Rezende, S.M., et al., Phys. Rev. Lett. 98, 087202 (2007)CrossRef
Rabinovich, M.I., Trubetskov, D.I., Introduction to the Theory of Oscillations and Waves (Science, Moscow, 1984)Google Scholar
Kapranov, M.V., Kuleshov, V.N., Utkin, G.M., Theory of Oscillations in Radiotechnics (Science, Moscow, 1984)Google Scholar
Pikovsky, A., Rosenblum, M., Kurths, J., Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge, 2001)CrossRefGoogle Scholar
Kuznetsov, A.P., Stankevich, N.V., Turukina, L.V., Physica D 238, 1203 (2009)CrossRef
Belanovsky, A.D., et al., Appl. Phys. Lett. 103, 122405 (2013)CrossRef