Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T18:38:43.631Z Has data issue: false hasContentIssue false

Modeling and magnetoelectric properties of laminate composite of nickel plate and piezoelectric multilayer vibrator

Published online by Cambridge University Press:  05 June 2014

Ze-Qing Guo
Affiliation:
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P.R. China
Sai-Huan Zhang
Affiliation:
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P.R. China
Jian-Ping Zhou*
Affiliation:
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P.R. China
Zhan Shi
Affiliation:
Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, P.R. China
Guang-Bin Zhang
Affiliation:
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P.R. China
Chao-Yong Deng
Affiliation:
Department of Electronic Science, Guizhou University, Guiyang 550025, P.R. China
*
Get access

Abstract

A magnetoelectric theoretical model combing piezoelectric and piezomagnetic parts about the longitudinal vibration was proposed for the laminate composite based on equivalent circuit. The model shows that the magnetoelectric voltage is relative to the thickness ratio, total thickness, frequency and loss. A simple laminate magnetoelectric composite was prepared by bonding a nickel plate and a multilayer piezoelectric vibrator together for the experimental research. The multilayer vibrator enjoys high capacitance, large effective area and low thickness, leading to a high magnetic field sensitivity of 1 mOe at the magnetoelectric field coefficient of 2.58 V/cmOe in the simple composite with nickel thickness of 0.2 mm. The model fits the resonance frequency well with the experimental results. Numerical calculation well predicates the magnetoelectric experimental behaviors, presenting a magnetoelectric maximum at about the thickness ratio 0.3 between the nickel plate and multilayer vibrators. This approach provides a method for the magnetoelectric application.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G., J. Appl. Phys. 103, 031101 (2008)CrossRef
Eerenstein, W., Mathur, N.D., Scott, J.F., Nature 442, 759 (2006)CrossRef
Koo, Y.S., Bonaedy, T., Sung, K.D., Jung, J.H., Yoon, J.B., Jo, Y.H., Jung, M.H., Lee, H.J., Koo, T.Y., Jeong, Y.H., Appl. Phys. Lett. 91, 212903 (2007)CrossRef
Zhou, J.-P., Lv, L., Liu, Q., Zhang, Y.-X., Liu, P., Sci. Technol. Adv. Mater. 13, 045001 (2012)CrossRef
Dong, S., Li, J.-F., Viehland, D., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1253 (2003)CrossRef
Guo, M., Dong, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2578 (2009)
Zhou, J.-P., Zhao, W., Guo, Y.-Y., Liu, P., Zhang, H.-W., J. Appl. Phys. 105, 063913 (2009)CrossRef
Hao, L., Zhou, D., Fu, Q., Hu, Y., J. Mater. Sci. 48, 178 (2013)CrossRef
Zhou, Y., Zhang, J., Feng, Z., Li, B., Li, L., Su, Y., Jing, C., Cao, S., J. Mater. Sci. 46, 2649 (2011)CrossRef
Li, L., Chen, X.M., Zhu, H.Y., J. Alloys Compd. 526, 116 (2012)CrossRef
Zhou, J.-P., He, H.-C., Shi, Z., Liu, G., Nan, C.-W., J. Appl. Phys. 100, 094106 (2006)CrossRef
Dong, S., Zhai, J., Xing, Z., Li, J., Viehland, D., Appl. Phys. Lett. 91, 022915 (2007)CrossRef
Nan, C.-W., Liu, G., Lin, Y., Chen, H., Phys. Rev. Lett. 94, 197203 (2005)CrossRef
Liu, G., Nan, C.-W., Sun, J., Acta Mater. 54, 917 (2006)CrossRef
Janolin, P.-E., Pertsev, N.A., Sichuga, D., Bellaiche, L., Phys. Rev. B 85, 140401 (2012)CrossRef
Wang, Y., Hasanyan, D., Li, M., Gao, J., Li, J., Viehland, D., Luo, H., J. Appl. Phys. 111, 124513 (2012)CrossRef
Zhou, J.-P., Zhang, Y.-X., Zhang, G.-B., Liu, P., J. Appl. Phys. 113, 043907 (2013)CrossRef
Xuan, H.C., Wang, L.Y., Zheng, Y.X., Li, Y.L., Cao, Q.Q., Chen, S.Y., Wang, D.H., Huang, Z.G., Du, Y.W., Appl. Phys. Lett. 99, 032509 (2011)CrossRef
Israel, C., Petrov, V.M., Srinivasan, G., Mathur, N.D., Appl. Phys. Lett. 95, 072505 (2009)CrossRef
Wang, J.-F., Su, W.-B., Wang, C.-M., Ge, Z.-G., Piezoelectric Vibration Theory and Application (Science Press, Beijing, 2011)Google Scholar
Engdahl, G., Handbook of Giant Magnetostrictive Materials (Elsevier Inc., San Diego, 2000)Google Scholar
Yang, F., Wen, Y.M., Li, P., Zheng, M., Bian, L.X., Acta Phys. Sin. 56, 3539 (2007) [in Chinese]
Islam, R.A., Ni, Y., Khachaturyan, A.G., Priya, S., J. Appl. Phys. 104, 044103 (2008)CrossRef