Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T08:00:34.943Z Has data issue: false hasContentIssue false

Microstructure and morphology evolution in chemical solution deposited PbSe films on GaAs(100)

Published online by Cambridge University Press:  03 September 2003

M. Shandalov
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev Beer-Sheva 84105, Israel
Y. Golan*
Affiliation:
Department of Materials Engineering, Ben-Gurion University of the Negev Beer-Sheva 84105, Israel
Get access

Abstract

We have studied the microstructure and morphology evolution in PbSe films chemically deposited on GaAs(100) substrates. The films consisted of a single phase of nanocrystalline rocksalt PbSe. The deposition temperature was found to be an important parameter which strongly influences the film morphology. A gradual transition to strong (111) texture was obtained with increasing deposition temperature, accompanied by a significant increase in crystallite size. Transmission electron microscopy (TEM) cross-sections showed two distinct regions. A layer of small, rounded crystals near the GaAs/PbSe interface above which a second region composed of columnar, $\langle$111$\rangle$ oriented crystallites was observed. High resolution TEM and Fourier analysis showed that the first layer of crystallites are in epitaxial registry with the GaAs substrate, in spite of the large (8%) lattice mismatch and the presence of a thin, amorphous interfacial layer.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Banyai, S. Koch, Semiconductor Quantum Dots (World Scientific, Singapore, 1993)
Alivisatos, A.P., Science 271, 933 (1996) CrossRef
J.H. Fendler, Nanoparticles and Nanostructured Films: Preparation, Characterization, and Applications (Wiley-VCH, Weinheim, 1998)
Barbara, P.F., Acc. Chem. Res. 32, 387 (1999)
D.E. Bode, Physics of Thin Films (New York, Academic Press, 1966)
Liu, X.F., Zhang, M.D., Int. J. Infrared Millimeter Waves 21, 1697 (2000) CrossRef
Wise, F., Acc. Chem. Res. 33, 773 (2000) CrossRef
G. Hodes, Chemical Solution Deposition of Semiconductor Films (M. Dekker, New-York, 2003)
Biro, L.P., Darabont, A., Fitori, P., Europhys. Lett. 4, 691 (1987) CrossRef
Gorer, S., Albu-Yaron, A., Hodes, G., Chem. Mater. 7, 1243 (1995) CrossRef
Gorer, S., Albu-Yaron, A., Hodes, G., J. Phys. Chem. 99, 16442 (1995) CrossRef
Grozdanov, I., Najdoski, M., Dey, S.K., Mater. Lett. 38, 28 (1999) CrossRef
Pramanik, P., Biswas, S., Basu, P.K., Mondal, A., J. Mater. Sci. Lett. 9, 1120 (1990) CrossRef
Biro, L.P., Candea, R.M., Borodi, G., Darabont, A., Fitori, P., Bratu, I., Dadarlat, D., Thin Solid Films 165, 303 (1988) CrossRef
Kainthla, R.C., Pandya, D.K., Chopra, K.L., J. Electrochem. Soc. 127, 277 (1980) CrossRef
Candea, R.M., Dadarlat, N., Turcu, R., Indrea, E., Phys. Stat. Sol. A 90, K91 (1985) CrossRef
Kitaev, G.A., Khvorenkova, A.Z., Russ. J. Appl. Chem. 72, 1520 (1999)
Mulik, R.N., Rotti, C.B., More, B.M., Sutrave, D.S., Shahane, G.S., Garadkar, K.M., Deshmukh, L.P., Hankare, P.P., Indian J. Pure Appl. Phys. 34, 903 (1996)
Davis, J.L., Norr, M.K., J. Appl. Phys. 37, 1670 (1966) CrossRef
Isshiki, M., Endo, T., Masumoto, K., Usui, Y., J. Electrochem. Soc. 137, 2697 (1990) CrossRef
Watanabe, S., Mita, Y., J. Electrochem. Soc. 116, 989 (1969) CrossRef
H.S. Peiser, X-Ray Diffraction by Polycrystalline Materials (Chapman & Hall, London, 1960)
Golan, Y., Ter-Ovanesian, E., Manassen, Y., Margulis, L., Hodes, G., Rubinstein, I., Bithell, E.G., Hutchison, J.L., Surf. Sci. 350, 277 (1996) CrossRef
See for example: Golan, Y., Alperson, B., Hutchison, J.L., Hodes, G., Rubinstein, I., Adv. Mater. 9, 236 (1997) CrossRef