Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:45:03.306Z Has data issue: false hasContentIssue false

Measurement of the amount of liquid and vapourcreated by an electric arc on an electrode –case of Ag and AgSnO2 electrodes

Published online by Cambridge University Press:  21 July 2011

Ph. Teste*
Affiliation:
Laboratoire de Génie Électrique de Paris, Centre National de la Recherche Scientifique (UMR 8507), SUPELEC, University of Paris 6 et Paris 11, 11 rue Joliot Curie, Plateau de Moulon, 91192 Gif-sur-Yvette, France
R. Andlauer
Affiliation:
Laboratoire de Génie Électrique de Paris, Centre National de la Recherche Scientifique (UMR 8507), SUPELEC, University of Paris 6 et Paris 11, 11 rue Joliot Curie, Plateau de Moulon, 91192 Gif-sur-Yvette, France
T. Leblanc
Affiliation:
Laboratoire de Génie Électrique de Paris, Centre National de la Recherche Scientifique (UMR 8507), SUPELEC, University of Paris 6 et Paris 11, 11 rue Joliot Curie, Plateau de Moulon, 91192 Gif-sur-Yvette, France
*
Get access

Abstract

In this paper an original experimental device is presented. It allowed to obtain, for the first time, the total amount of liquid and vapour of metal created on the electrode surface by a non stationary electric arc (600 A/20 ms) burning in air at atmospheric pressure. The results are presented for two different materials Ag and AgSnO2 and for electrode gap values in the range 1–10 mm. The amount of liquid and vapour created under the arc action is compared with usual erosion rate in the same experimental conditions. In the case of Ag electrodes the amount of liquid metal created on the anode may be 3 to 5 times higher than on the cathode although the usual erosion rates are more important at the cathode. For the anode, the usual erosion may represent a very low percentage (<10%) of the total amount of metal liquid created showing then that a very small part of the liquid created during the arc is ejected. In the case of AgSnO2 electrodes the amount of liquid metal is smaller. The usual erosion rates at the cathode are higher than for the anode and the usual erosion represent 10 to 50% of the amount of liquid and vapour created.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

He, Z.J., Haug, R., J. Phys. D Appl. Phys. 26, 1 (1997)
Tuma, D.T., Chen, C.L., Davies, D.K., J. Appl. Phys. 49, 3821 (1978) CrossRef
Gray, E.W., Pharney, J.R., J. Appl. Phys. 45, 667 (1974) CrossRef
E. Hantzsche, in Proceedings of the 7th Int. Symposium on Discharges and Electrical Insulation in Vacuum (1976), p. 324
Daalder, J.E., J. Phys. D Appl. Phys. 9, 2379 (1976) CrossRef
M.B. Schulman, P.G. Slade, L.D. Loud, W. Li, in Proceedings of the 44th Holm Conference on Electrical Contacts, Arlington (1998), p. 307
J.-P. Chabrerie, L. Boyer, in Proceedings of the 13th Int. Conference Electrical Contact Phenomena, Lausanne (1986), pp. 96–100
Ph. Teste, R. Andlauer, T. Leblanc, J.-P. Chabrerie, Plasma Sources Sci. Technol. 10, 10 (2001) CrossRef
Gouega, A.M., Teste, Ph., Andlauer, R., Leblanc, T., Chabrerie, J.-P., Eur. Phys. J. Appl. Phys. 11, 111 (2000) CrossRef
P. Colombo, M. Bigliati, C. Lonzar, in Proceedings of the Society of Automobile Engineers World Congress, Detroit (2002), USA
J. Haidar, Ph.D. thesis, University of Paris 6, 1989
A.M. Gouega, Ph.D. thesis, University of Paris 11, 1995
Sanders, N.A., Etemadi, K., Hsu, K.C., Pfender, E., J. Appl. Phys. 53, 4136 (1982) CrossRef
Sanders, N.A., Pfender, E., J. Appl. Phys. 55, 714 (1984) CrossRef
Amakawa, T., Jenistaz, J., Heberlein, J., Pfender, E., J. Phys. D: Appl. Phys. 31, 2826 (1998) CrossRef
J. Devautour, Ph.D. thesis, University of Paris 6, 1992