Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T11:42:10.994Z Has data issue: false hasContentIssue false

Magnetocontrollable high-pass behavior of waveguides with magnetorheological fluids

Published online by Cambridge University Press:  27 August 2013

Xinwei Li
Affiliation:
Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, P.R. China
Chunzen Fan
Affiliation:
Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, P.R. China School of Physical Science and Engineering, Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, P.R. China
Jiping Huang*
Affiliation:
Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, P.R. China
*
Get access

Abstract

Tunably controlling waveguide behaviors are always desirable for various kinds of applications. In this work, we theoretically propose the possibility to realize a tunable high-pass waveguide by magnetically controlling magnetorheological fluids inside. Through computer simulations and numerical calculations, we find that the low-pass or high-pass behavior of such waveguides can be manually switched. Furthermore, the cutoff frequency and transmission band of the waveguides can be smoothly controlled by an applied magnetic field. It is revealed that the underlying mechanism lies in the field-induced anisotropic structure of magnetorheological fluids. By combining soft materials, this work shows a way to obtain magnetocontrollable properties of waveguides, which may help to achieve tunable properties for other metamaterial-based devices like invisible cloaks and photonic crystals.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968)CrossRef
Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000)CrossRef
Sun, S.L., Chui, S.T., Zhou, L., Phys. Rev. E 79, 066604 (2009)CrossRef
Shelby, R.A., Smith, D.R., Nemat-Nasser, S.C., Schultz, S., Appl. Phys. Lett. 78, 489 (2001)CrossRef
Simovski, C.R., Sauviac, B., Phys. Rev. E 70, 046607 (2004)CrossRef
Sihvola, A., Eur. Phys. J. Appl. Phys. 46, 32602 (2009)CrossRef
Pendry, J.B., Holden, A., Robbins, J.D., Stewart, J.W., IEEE Trans. Microwave Theor. Tech. 47, 2075 (1999)CrossRef
Sarychev, A.K., Shvets, G., Shalaev, V.M., Phys. Rev. E 73, 036609 (2006)CrossRef
Engheta, N., Ziolkowski, R.W., Metamaterials: Physics and Engineering Explorations (Wiley-Interscience, Hoboken, 2006)CrossRefGoogle Scholar
Hrabar, S., Bartolic, J., Sipus, Z., IEEE Trans. Antennas Propag. 53, 110 (2005)CrossRef
Marques, R., Martel, J., Mesa, F., Medina, F., Phys. Rev. Lett. 89, 183901 (2002)CrossRef
Rotman, W., IEEE Trans. Antennas Propag. 10, 82 (1962)CrossRef
Pendry, J.B., Holden, J.A., Robbins, J.D., Stewart, J.W., J. Phys. Condens. Matter 10, 4785 (1998)CrossRef
Tretyakov, S., Analytical Modeling in Applied Electromagnetics (Artech House, Boston, 2003)Google Scholar
Zhu, W.R., Zhao, X.P., Eur. Phys. J. Appl. Phys. 50, 21101 (2010)CrossRef
Cheng, Y.Z., Nie, Y., Gong, R.Z., Yang, H.L., Eur. Phys. J. Appl. Phys. 56, 31301 (2011)CrossRef
Gollub, J.N., Smith, D.R., Vier, D.C., Perram, T., Mock, J.J., Phys. Rev. B 71, 195402 (2005)CrossRef
Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lovat, G., Paulotto, S., IEEE Trans. Microwave Theor. Tech. 53, 1431 (2005)CrossRef
Halsey, T.C., Science 258, 761 (1992)CrossRef
Löwen, H., Madden, P.A., Hansen, J.P., Phys. Rev. Lett. 68, 1081 (1992)CrossRef
Huang, J.P., Yu, K.W., J. Phys. Condens. Matter 14, 1213 (2002)CrossRef
Zhou, L., Wen, W.J., Sheng, P., Phys. Rev. Lett. 81, 1509 (1998)CrossRef
Huang, J.P., Yu, K.W., Phys. Rep. 431, 87 (2006)CrossRef
Gao, Y., Huang, J.P., Liu, Y.M., Gao, L., Yu, K.W., Zhang, X., Phys. Rev. Lett. 104, 034501 (2010)CrossRef
Bergman, D., Phys. Rep. 43, 377 (1978)CrossRef
Stroud, D., Superlattice Microstruct. 23, 567 (1998)CrossRef
Jackson, J.D., Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)Google Scholar
Afsar, M.N., Sharma, A., Obol, M., IEEE Instrumentation and Measurement Technology Conference 1–3, 264 (2009)
Vicente, J., Klingenberg, D.J., Alvarez, R.H., Soft Matter 7, 3701 (2011)CrossRef
Lam, J., J. Appl. Phys. 68, 392 (1990)CrossRef
Giordano, S., J. Electrostat. 58, 59 (2003)CrossRef
Fan, C.Z., Huang, J.P., Appl. Phys. Lett. 89, 141906 (2006)CrossRef
Maslovski, S.I., Silveirinha, M.G., Phys. Rev. B 80, 245101 (2009)CrossRef
Lourtioz, J.M., Benisty, H., Berger, V., Gérard, J.M., Maystre, D., Tchelnokov, A., Photonic Crystals: Towards Nanoscale Photonic Devices (Springer-Verlag, Germany, 2005), pp. 124129 Google Scholar
Fan, C.Z., Wang, G., Huang, J.P., J. Appl. Phys. 103, 094107 (2008)CrossRef