Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T18:50:08.715Z Has data issue: false hasContentIssue false

Luminescence from thulium and samarium doped amorphous AlN thin films deposited by RF magnetron sputtering and the effect of thermal activation on luminescence

Published online by Cambridge University Press:  23 March 2006

M. Maqbool*
Affiliation:
Department of Science and Mathematics, Mount Olive College, 634 Henderson Street, Mount Olive, NC 28365, USA
Get access

Abstract

Thin films of thulium and samarium doped AlN are deposited on silicon (111) substrates at 77 K by rf magnetron sputtering method. 200–400 nm thick films are grown at 100–200 watts RF power and 5–8 mtorr nitrogen, using a metal target of Al with Tm and Sm separately. X-rays diffraction results show that films are amorphous. Cathodoluminescence studies are performed at room temperature and two dominant peaks are observed in Tm at 467 nm from $^{1}{\rm D}_{2}$ $\to$ $^{3}{\rm F}_{4}$ transition and 480 nm from 1G4 to the ground state 3H6 transition. Other peaks in the visible region are obtained at 650 nm and 685 nm due to $^{1}{\rm G}_{4}$ $\to$ $^{3}{\rm F}_{4}$ and $^{1}{\rm D}_{2}$ $\to$ $^{3}{\rm H}_{4}$ transitions. Peaks in the ultraviolet and infrared region are also obtained at 371 nm, and 802 nm as a result from $^{1}{\rm D}_{2}$ $\to$ $^{3}{\rm H}_{6}$ and $^{3}{\rm H}_{4}$ $\to$ $^{3}{\rm H}_{6}$ transition respectively. Sm gives four peaks at 564 nm, 600 nm, 648 nm and 707 nm as a result of $^{4}{\rm G}_{5/2}$ $\to$ $^{6}{\rm H}_{5/2}$ , $^{4}{\rm G}_{5/2}$ $\to$ $^{6}{\rm H}_{7/2}$ , $^{4}{\rm G}_{5/2}$ $\to$ $^{6}{\rm H}_{9/2}$ and $^{4}{\rm G}_{5/2}$ $\to$ $^{6}{\rm H}_{11/2}$ transitions. Films are thermally activated at 1200 K for half an hour in a nitrogen atmosphere. Thermal activation enhances the intensity of luminescence.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caldwell, M.L., Martin, A.L., Dimitrova, V.I., Van Patten, P.G., Kordesch, M.E., Richardson, H.H., Appl. Phys. Lett. 78, 1246 (2001) CrossRef
M. Maqbool, H.H. Richardson, M.E. Kordesch, Mater. Res. Soc. Symp. Proc., Vol. 831 Article E8.12.1, @2005 Materials Research Society
M. Maqbool, H.H. Richardson, P.G. Van Patten, M.E. Kordesch, Mat. Res. Soc. Symp. Proc., Vol. 798, pp. 8.5.1–8.5.5, 2004, Materials Research Society
Suyver, J.F., Kik, P.G., Kimura, T., Polman, A., Franzo, G., Coffa, S., Nucl. Instrum. Meth. B 148, 497 (1999) CrossRef
Gruber, J.B., Zandi, B., Lozykowski, H.J., Jadwisienczak, W.M., J. Appl. Phys. 91, 2929 (2002) CrossRef
Lozykowski, H.J., Phys. Rev. B 48, 17758 (1993) CrossRef
Morrison, C.A., Wortman, D.E., Opt. Mater. 1, 195 (1992) CrossRef
Tsang, W.T., Logan, R.A., Appl. Phys. Lett. 49, 1686 (1986) CrossRef
Steckl, A.J., Birkhahn, R., Appl. Phys. Lett. 73, 1700 (1998) CrossRef
Properties of Advanced Semiconductor Materials, GaN, AlN, InN, BN, SiC, SiGe, edited by M. Levinshtein, S. Rumyantsev, M. Shur (Wiley, New York, 2001)
Vetter, U., Zenneck, J., Hofsass, H., Appl. Phys. Lett. 83, 2145 (2003) CrossRef
Lim, K.S., Babu, P., Lee, S.K., Pham, V.T., Hamilton, D.S., J. Lumin. 102–103, 737 (2003) CrossRef
Walsh, B.M., Barnes, N.P., Bartolo, B.D., J. Appl. Phys. 83, 2772 (1998) CrossRef
Lozykowski, H.J., Jadwisienczak, W.M., Brown, I., Solid State Commun. 110, 253 (1999) CrossRef
Bell, M.J.V., Nunes, L.A.O., Zanatta, A.R., J. Appl. Phys. 86, 338 (1999) CrossRef
Overberg, M., Abernathy, C.R., MacKenzie, J.D., Pearton, S.J., Wilson, R.G., Zavada, J.M., Mat. Sci. Eng. B 81, 121 (2001) CrossRef
MacKenzie, J.D., Abernathy, C.R., Pearton, S.J., Hommerich, U., Seo, J.T., Wilson, R.G., Zavada, J.M., Appl. Phys. Lett. 72, 2710 (1998) CrossRef
Wang, S.Z., Yoon, S.F., He, L., Shen, X.C., J. Appl. Phys. 90, 2314 (2001) CrossRef