Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T17:33:39.802Z Has data issue: false hasContentIssue false

Limb positioning and shear flows in tetrapods

Published online by Cambridge University Press:  11 August 2011

O.P. Boryskina
Affiliation:
Institute of Radiophysics and Electronics NAS of Ukraine, Acad. Proskura str. 12, Kharkov 61085, Ukraine
A. Al-Kilani
Affiliation:
Laboratoire Matière et Systèmes Complexes, 10 rue Alice Domon et Léonie Duquet, CNRS/Université Paris-Diderot, Paris 75013, France
V. Fleury*
Affiliation:
Laboratoire Matière et Systèmes Complexes, 10 rue Alice Domon et Léonie Duquet, CNRS/Université Paris-Diderot, Paris 75013, France
*
Get access

Abstract

There is increasing evidence that animal morphogenesis consists of a large scale tissue flow, which defines the gross characteristics of the animal body at a very early developmental stage. We have studied the vertebrate embryo cell trajectories between a moment when it is flat and formless, to a moment when the body plan is recognizable (chicken embryo days 2–3 of development). We find that a large vortex flow patterns the vertebrate bauplan, and especially the limb territories, both hindlimbs and forelimbs. In vivo velocity measurements show that the vortices are dragged by a localized shear oriented along the median axis. A simple hydrodynamic model accounts for the lenticular shape of the limb plates. On the hindlimb plate, the flow propagates in the form of a solid-body vortex on the limb plate, dragged by a Poiseuille flow along the backbone. In vivo tonometry measurements show that there exist stress gradients in the embryonic tissue, and that the flow pattern is congruent with the direction of decrease of stress magnitude.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fleury, V., Organogenesis 2, 6 (2005)CrossRef
Fleury, V., Rev. Quest. Sci. 177, 235 (2006)
Fleury, V., Al-Kilani, A., Unbekandt, M., Nguyen, T.-H., Organogenesis 3, 49 (2007)CrossRef
Fleury, V., Eur. Phys. J. Appl. Phys. 45, 30101 (2009)CrossRef
Wetzel, R., Vehr. physik.-med. Ges. Würzburg 40, H.5 (1924)
Cui, C., Yang, X., Chuai, M., Glazier, J.A., Weijer, C.J., Dev. Biol. 284, 37 (2005)CrossRef
Zamir, E.A., Rongish, B.J., Little, C.D., PLoS Biol. 6, e247 (2008)CrossRef
Chuai, M., Weijer, C., HFSP J. 3, 71 (2009)CrossRef
Phillips, H.M., Amer. Zool. 18, 81 (1978)CrossRef
Foty, R.A., Forgacs, G., Pfleger, C.M., Steinberg, M., Phys. Rev. Lett. 72, 14 (1994)
Solnica-Krezel, L., Curr. Biol. 13, R7 (2003)CrossRef
Wyman, J., Proc. Boston Soc. Nat. Hist. 1866, 243 (1868)
Graebel, W.P., Advanced Fluid Mechanics, (Academic Press, London, 2007)Google Scholar
Giaiotti, D.B., Stel, F., Environmental Fluid Dynamics, Physics of the Atmosphere, Ph.D. course, University of Trieste, International Center for Theoretical Physics, 2006
Fleury, V., Al-Kilani, A., Boryskina, O.P., Cornelissen, A.J.M., Nguyen, T.-H., Unbekandt, M., Leroy, L., Baffet, G., le Noble, F., Sire, O., Lahaye, E., Burgaud, V., Phys. Rev. E 81, 021920 (2010)CrossRef
Hamburger, V., Hamilton, H.L., J. Morphol. 88, 49 (1951), see also online data base http://geisha.arizona.edu/geisha/CrossRef
Cohn, M.J., Izpisúa-Belmonte, J.C., Abud, H., Heath, J.K., Tickle, C., Cell 80, 739 (1995)CrossRef
Rallis, R.C., Buono, J.D., Logan, M.P.O., Development 132, 1961 (2005)CrossRef
Berge, C., Am. J. Phys. Anthropol. 105, 441 (1998)3.0.CO;2-R>CrossRef