Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T17:59:46.978Z Has data issue: false hasContentIssue false

Light emission from corona discharge in SF6 and SF6/N2 gas mixtures at high pressure

Published online by Cambridge University Press:  04 April 2006

A. Lemzadmi*
Affiliation:
LEMD/CNRS, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France Laboratoire de Génie Électrique, Université de Guelma, BP 401, 24000 Guelma, Algeria
N. Bonifaci
Affiliation:
LEMD/CNRS, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France
A. Denat
Affiliation:
LEMD/CNRS, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France
M. Nemamcha
Affiliation:
Laboratoire de Génie Électrique, Université de Guelma, BP 401, 24000 Guelma, Algeria
Get access

Abstract

A spectroscopic investigation of corona discharges in SF6/N2 gas mixtures has been undertaken using an optical multichannel analyser (OMA). A point-to-plane geometry has been used with point radii varying from 3 to 10 μm. Spectra are measured for high pressures ranging from 0.2 MPa up to 1.4 MPa and for different concentrations of SF6 in the gas mixture. The spectra in the 200–850 nm spectral range are mainly made of molecular bands, which is indicative of a low temperature discharge. It has been noted that SF6 emits in the region of 420 nm to 510 nm in positive and negative polarities, although in negative polarity the emission is weaker. For SF6/N2 mixtures, the main source of light emission is from N2. The resultant spectra are used to evaluate the rotational T r and vibrational T v temperatures of excited N2, T r being considered, due to the high pressure, to be equal to the kinetic temperature T kin in the corona discharge. T r and T v are determined by comparing the experimental spectrum of the second positive system ( $C^{3}\Pi_{u}\toB^{3}\Pi_{g})$ of N2 and the simulated one, which is obtained using a convolution method. As expected, the results show that the measured rotational temperature T r increases steadily with the mean discharge current, while its increase with gas pressure is less pronounced. The values of T r are higher for the positive corona discharge than the negative and also for mixtures having higher amounts of SF6. In all conditions, we found $T_{v}>T_{r}$ and T v is less sensitive to the variation of the current.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Niemeyer, L., Chu, F.Y., IEEE T. Dielect. El. In. 27, 184 (1992)
Christophorou, L.G., Van Brunt, R.J., IEEE. T. Dielect. El. In. 2, 952 (1995) CrossRef
Birtwistle, D.T., Herzenberg, A., J. Phys. B At. Mol. Opt. 4, 53 (1971) CrossRef
W. Lochte-Holtgreven, Evaluation of plasma parameters in Plasma diagnostics, edited by W. Lochte-Holtgreven (North-Holland, Amsterdam, 1968), Chap. 3
Gallimberti, I., Hepworth, J.K., Kleve, R.C., J. Phys. D Appl. Phys. 7, 880 (1974) CrossRef
Phillips, D.M., J. Phys. D Appl. Phys. 8, 507 (1975) CrossRef
Czernichowski, A., J. Phys. D Appl. Phys. 20, 559 (1987) CrossRef
Chelouah, A., Marode, E., Hartmann, G., Achat, S., J. Phys. D Appl. Phys. 27, 940 (1994) CrossRef
Denat, A., Bonifaci, N., Nur, M., IEEE T. Dielect. El. In. 5, 382 (1998) CrossRef
Hartinger, K.T., Pierre, L., Cahen, C., J. Phys. D Appl. Phys. 31, 2566 (1998) CrossRef
H. Champain, G. Hartmann, M. Lalmas, A. Goldman, 11th International Conference of gas discharge and their applications, Tokyo, 1995, pp. 152–155
Sigmond, R., J. Electrostat. 18, 249 (1986) CrossRef
Bonifaci, N., Denat, A., Atrazhev, V.M., IEEE T. Dielect. El. In. 2, 137 (1995) CrossRef
M. Haidara, A. Denat, P. Atten, J. Electrostat. 40, 41, 61 (1997)
Hinojosa, G., de Urquijo, J., J. Phys. D Appl. Phys. 36, 2510 (2003) CrossRef
Casanovas, A.M., Casanovas, J., Dubroca, V., Lagarde, F., Larbi, A., J. Appl. Phys. 70, 1220 (1991) CrossRef
V. Zingin, S. Suker, A. Gokmen, A. Rumeli, S. Dincer, in Gaseous Dielectrics VI, edited by L.G. Christophorou, I. Sauers (Plenium Press, NewYork, 1991), pp. 595–599
Edelson, D., MacAffe, K.B., J. Chem. Phys. 19, 1311 (1951) CrossRef
M.B. Robin, in Higher Excited States of Polyatomic Molecules, Vol. III (Academic Press, Inc., Orlando, FL, 1985)
T.H. Teich, R. Braublich, in Gaseous Dielectrics IV, edited by L.G. Christophorou, M.O. Pace (Pergamon Press, NY, 1984), pp. 71–80
Heider, R.F., Sutton, D.J., Suchard, S.N., Chem. Phys. Lett. 37, 243 (1976) CrossRef
Halpern, B., Gomer, R., J. Chem. Phys. 51, 1031 (1969) CrossRef
L'air Liquide, in Gas Encyclopædia (Elsevier, 1976)
Scmidt, W.F., Jungblut, H., J. Phys. D 12, 67 (1979) CrossRef
de Urquijo-Carmona, J., Alvarez, I., Cisneros, C., J. Phys. D Appl. Phys. 19, 207 (1986) CrossRef