Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T17:43:11.370Z Has data issue: false hasContentIssue false

Lateral conductivity in GaAs/InAs quantum dot structures

Published online by Cambridge University Press:  15 July 2004

L. Dózsa*
Affiliation:
Research Institute for Technical Physics and Materials Science, Konkoly-Thege 29-33, H-1121 Budapest, Hungary
A. L. Tóth
Affiliation:
Research Institute for Technical Physics and Materials Science, Konkoly-Thege 29-33, H-1121 Budapest, Hungary
Zs. J Horváth
Affiliation:
Research Institute for Technical Physics and Materials Science, Konkoly-Thege 29-33, H-1121 Budapest, Hungary
P. Hubík
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6, Czech Republic
J. Krištofik
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6, Czech Republic
J. J. Mareš
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6, Czech Republic
E. Gombia
Affiliation:
MASPEC Institute - C.N.R., Parco Area delle Scienze 37a, 43010 Fontanini-Parma, Italy
R. Mosca
Affiliation:
MASPEC Institute - C.N.R., Parco Area delle Scienze 37a, 43010 Fontanini-Parma, Italy
S. Franchi
Affiliation:
MASPEC Institute - C.N.R., Parco Area delle Scienze 37a, 43010 Fontanini-Parma, Italy
P. Frigeri
Affiliation:
MASPEC Institute - C.N.R., Parco Area delle Scienze 37a, 43010 Fontanini-Parma, Italy
Get access

Abstract

Lateral conductivity effects have been investigated in self-organised InAs quantum dot (QD) structures grown in a GaAs matrix with different cap layers. Current-voltage (I-V), capacitance-voltage (C-V), DLTS, capacitance and conductance frequency dependence, fast defect transient (FDT), and electron beam induced conductivity (EBIC) measurements were applied. The conductivity in the QD plane decays within a distance of 10 microns. The capacitance transients are dominated by the local QD-plane transversal conductivity and by the free carrier transport in the cap layer. The nonequilibrium free carrier created by electron beam excitation develop a potential barrier at macroscopic distances from the electrical contacts.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Walther, C., Bollman, J., Kissel, H., Kirmse, H., Neumann, W., Masselink, W. T., Physica B 273–274, 971 (1999) CrossRef
Sobolev, M.M., Kovsh, A. R., Mstinov, V., Egorov, A. Yu, Zhukov, A.E., J. El. Mat. 28, 491 (1999) CrossRef
Kapteyn, C.M. A, Heinrichdorff, F., Stier, O., Heintz, R., Grundmann, M., Zakharov, N.D., Bimberg, D., Werner, P., Phys. Rev. B 60, 14265 (1999) CrossRef
Dózsa, L., Horváth, Zs. J., Van Tuyen, Vo, Pödör, B., Mohácsy, T., Franchi, S., Frigeri, P., Gombia, E., Mosca, R., Microel. Eng. 51–52, 85 (2000) CrossRef
Zs. J. Horváth, L. Dózsa, Vo Van Tuyen, B. Pödör, Á. Nemcsics, P. Frigeri, E. Gombia, R. Mosca, S. Franchi, Thin Solid Films 167, 89 (2000) CrossRef
Zs. J. Horváth, P. Frigeri, S. Franchi, Vo Van Tuyen, E. Gombia, R. Mosca, L. Dózsa, Appl. Surf. Sci 190, 222 (2002) CrossRef
Gombia, E., Mosca, E., Frigieri, P., Franchi, S., Amighetti, S., Ghezzi, C., Mater. Sci. Eng. B 91–92, 393 (2002) CrossRef
Dózsa, L., Horváth, Zs.J., Hubík, P., Krištofik, J., Mareš, J. J., Gombia, E., Frigeri, P., Mosca, R., Franchi, S., Pcz, B., Dobos, L., Phys. Stat. Sol. C 3, 975 (2003) CrossRef
Bosacchi, A., Frigeri, P., Franchi, S., Allegri, P., Avanzini, V., J. Cryst. Growth 175–176, 771 (1997) CrossRef
Dósa, L., Solid-State Electron. 35, 228 (1992) CrossRef