Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T04:57:58.226Z Has data issue: false hasContentIssue false

Ion flux-film structure relationship during magnetron sputtering of WO3

Published online by Cambridge University Press:  28 October 2011

A. Hemberg*
Affiliation:
Materia Nova Research Center, Parc Initialis, 1 Avenue Copernic, 7000 Mons, Belgium Chimie des Interactions Plasma-Surface, CIRMAP, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
S. Konstantinidis*
Affiliation:
Chimie des Interactions Plasma-Surface, CIRMAP, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
F. Renaux*
Affiliation:
Materia Nova Research Center, Parc Initialis, 1 Avenue Copernic, 7000 Mons, Belgium
J.P. Dauchot*
Affiliation:
Chimie des Interactions Plasma-Surface, CIRMAP, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
R. Snyders*
Affiliation:
Materia Nova Research Center, Parc Initialis, 1 Avenue Copernic, 7000 Mons, Belgium Chimie des Interactions Plasma-Surface, CIRMAP, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
Get access

Abstract

In this work, we have investigated the influence of the magnetic field configuration during magnetron sputtering of WO3 in order to establish the ion flux-film structure relationship. An asymmetric bipolar pulsed DC magnetron sputtering (PDMS) was used with two magnetic field configurations: balanced (BM) and unbalanced (UMB) magnetic configurations. Ion Energy Distribution Functions (IEDFs) of the main ion populations (Ar+, O+) were recorded. The IEDFs are broad with, in addition of the thermalized distribution around 2 eV, two peaks with available ion kinetic energy up to 40–100 eV associated with the positive part of the pulse. Comparing the BM and UBM data, we calculated an increase by a factor of 5 of the ionic current while the average energy per ion was kept constant (~44 eV). X-ray diffraction demonstrates the influence of the magnetic configuration on the coating phase constitution. The films are crystallized in the WO3 monoclinic phase with preferential orientations along the c axis using the BM configuration and along the a axis using the UBM one’s. On the other hand, it has been demonstrated that the grain size increases with the thickness using the BM configuration (up to 18 nm) while it remains constant using the UBM one’s (~7 nm).

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Olaya, J.J., Rodil, S.E., Muhl, S., Sanchez, E., Thin Solid Films 474, 119 (2005)CrossRef
Liu, B., Liping Wen, Q.H., Zhao, X., Thin Solid Films 517, 6569 (2009)CrossRef
Korotcenkov, G., Sens. Actuators B 107, 209 (2005)CrossRef
Moulzolf, S.C. et al., Sens. Actuators B 77, 375 (2001)CrossRef
Chang, J.F. et al., Sens. Actuators B 84, 258 (2002)CrossRef
Moon, W.-T., Lee, K.-S., Jun, Y.-K., Kim, H.-S., Hong, S.-H., Sens. Actuators B 115, 123 (2006)CrossRef
Gillet, M., Aguir, K., Bendahan, M., Mennini, P., Thin Solid Films 484, 358 (2005)CrossRef
Khatko, V., Vallejos, S., Calderer, J., Llobet, E., Vilanova, X., Correig, X., Sens. Actuators B 126, 400 (2007)CrossRef
LeGore, L.J., Lad, R.J., Moulzolf, S.C., Vetelino, J.F., Frederick, B.G., Kenike, E.A., Thin Solid Films 406, 79 (2002)CrossRef
Petrov, I., Barna, P.B., Hultman, L., Greene, J.E., J. Vac. Sci. Technol. A 21, 117 (2003)CrossRef
Petrov, I., Adibi, F., Greene, J.E., Sproul, W., Münz, W.D., J. Vac. Sci. Technol. A 10, 3283 (1992)CrossRef
Kelly, P.J., Arnell, R.D., Vacuum 56, 159 (2000)CrossRef
Olaya, J.J., Rodil, S.E., Muhl, S., Thin Solid Films 516, 8319 (2008)CrossRef
Rodil, S.E., Olaya, J.J., Muhl, S., Bhushan, B., Wei, G., Surf. Coat. Technol. 201, 6117 (2007)CrossRef
Zhou, J., Wu, Z., Liu, Z., J. Univ. Sci. Technol. 15, 775 (2008)CrossRef
Zlatanović, M., Beloševac, R., Popović, N., Kunosić, A., Surf. Coat. Technol. 90, 143 (1997)CrossRef
Zlatanović, M., Beloševac, R., Popović, N., Kunosić, A., Surf. Coat. Technol. 106, 150 (1998)CrossRef
Rubio-Roy, M., Corbella, C., Garcia-Céspedes, J., Polo, M.C., Pascual, E., Andújar, J.L., Bertran, E., Diam. Rel. Mater. 16, 1286 (2007)CrossRef
Karthikeyan, S., Hill, A.E., Cowpe, J.S., Pilkington, R.D., Vacuum 85, 634 (2010)CrossRef
Barshilia, H.C., Rajam, K.S., Appl. Surf. Sci. 255, 2925 (2008)CrossRef
Barshilia, H.C., Deepthi, B., Rajam, K.S., Thin Solid Films 516, 4168 (2008)CrossRef
Bradley, J.W., Bäcker, H., Aranda-Gonzalvo, Y., Kelly, P.J., Arnell, R.D., Plasma Sources Sci. Technol. 11, 165 (2002)CrossRef
Misina, M., Bradley, J.W., Backer, H., Aranda-Gonzalvo, Y., Karkari, S.K., Forder, D., Vacuum 68, 171 (2003)CrossRef
Bradley, J.W., Backer, H., Surf. Coat. Technol. 200, 616 (2005)CrossRef
Ohring, M., Materials Science of Thin Films: Deposition and Structure, 2nd edn. (Academic Press, San Diego, 2002)Google Scholar
Parfitt, L., Goldiner, M., Jones, J.W., Was, G.S., J. Appl. Phys. 77, 3029 (1995)CrossRef
Sanders, P.G., Witney, A.B., Weertman, J.R., Valiev, R.Z., Ziegel, R.W., Mater. Sci. Eng. A 204, 7 (1995)CrossRef