Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T08:42:34.089Z Has data issue: false hasContentIssue false

Investigation on creeping discharges propagating over epoxy resin and glass insulators in the presence of different gases and mixtures

Published online by Cambridge University Press:  14 November 2011

A. Beroual*
Affiliation:
École Centrale de Lyon, Ampère CNRS UMR 5005, 36 avenue Guy de Collongue, 69134 Écully, France King Saud University, Aramco Chair in Electrical Power, Riyadh, Kingdom of Saudi Arabia
M.L. Coulibaly
Affiliation:
ALSTOM Grid Power Transformers, TICC, 129, avenue de Paris, 91300 Massy, France
O. Aitken
Affiliation:
ALSTOM Grid, 130, rue Léon Blum, BP 1321, 69611 Villeurbanne Cedex, France
A. Girodet
Affiliation:
ALSTOM Grid, 130, rue Léon Blum, BP 1321, 69611 Villeurbanne Cedex, France
*
Get access

Abstract

This paper deals with the experimental characterization of discharges propagating over insulators of epoxy and glass, immersed in a gas or a gaseous mixture, under lightning impulse voltages (1.2/50 μs), using a point-plane electrode arrangement. The gases and mixtures we considered are SF6, N2, CO2, SF6-N2 and SF6-CO2. The morphology of creeping discharges and their final lengths are investigated versus the kind of insulator material, the amplitude and polarity of the voltage, the type of the gas (resp. mixture) and its pressure. It is shown that the shape of discharges and their final (stopping) lengths Lf depend significantly on the solid insulator and the type of gas. For given solid and gas, Lf increases quasi-linearly with the voltage and decreases when the gas pressure increases. The discharges do not always present a radial structure as reported in the literature. For given voltage and pressure, Lf is longer when the point electrode is positive than when it is negative while the initiation voltage of discharges is higher with a negative point than with a positive one; and Lf is longer with glass than with epoxy. Lf is shorter in SF6 than in CO2 or N2. On the other hand, the increase of SF6 content in SF6-CO2 mixture leads to a significant decrease of Lf. Therefore, the addition of small concentration of SF6 in a given gas mixture improves the dielectric strength of insulating structure.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sudarsham, T.S., Dougal, R., IEEE Trans. Electr. Insul. 21, 727 (1986)CrossRef
Wang, C.X., Wilson, A., Watte, M.W., IEE Proc Sci. Meas. Technol. 140, 346 (1993)CrossRef
Al Bawy, I., Farish, O., IEE Proc. A 138, 89 (1991)
Allen, N.L., Tan, B.H., Initiation of positive corona on insulator surface, in Proc. of 12th Int. Symp. on High Voltage Engineering, Bangalore, India, 2001, vol. 3, p. 5Google Scholar
Allen, N.L., Mikropulos, P.N., IEEE Trans. Electr. Insul. 6, 357 (1999)CrossRef
Akyuz, M., Gao, L., Cooray, V., Gustavsson, T.G., Gubanski, S.M., Larsson, A., IEEE Trans. Electr. Insul. 8, 902 (2001)CrossRef
Allen, N.L., Faircloth, D.C., IEEE Trans. Electr. Insul. 10, 295 (2003)CrossRef
Jing, T., IEEE Trans. Electr. Insul. 2, 771 (1995)
Srivastava, K.D., Zhou, J., IEEE Trans. Electr. Insul. 26, 428 (1991)CrossRef
Nakanishi, K., Yoshioka, A., Shibuya, Y., Nitta, T., Gaseous Dielectrics III (Edition Pergamon, New York, USA, 1982), pp. 365373Google Scholar
Fujinami, H., Takuma, T., Yashima, M., Kawamoto, T., IEEE Trans. Electr. Insul. 22, 333 (1987)
Knecht, A., Gaseous Dielectrics III (Edition Pergamon, New York, USA, 1982), pp. 356364Google Scholar
Fouracre, R.A., Twema, F.A., MacGregor, S.J., Given, M.J., The influence of charge on surface flashover, in 11th Int. Symp. on High Voltage Engineering, 1999, vol. 3, pp. 329332Google Scholar
Gallimbertti, I., Marchesi, I.Niemeyer, L., Streamer corona at an insulating surface, in Proc. of 7th Int. Symp. on High Voltage Engineering, Dresden, Germany, 1991, pp. 14Google Scholar
Allen, N.L., Hashem, A.A.R., J. Phys D: Appl. Phys. 35, 2551 (2002)CrossRef
Sato, S., Zaengl, W.S., Knecht, A., IEEE Trans. Electr. Insul. 22, 333 (1987)CrossRef
Jing, T., Morshuis, P.H.F., Evaluation of Field-steering Techniques in GIS with Respect to Surface Charge Accumulation, in Proc. of 4th Int. Conf. on Conduction and Breakdown in Solid Dielectrics, Sestri Levante, Italy, 1992, pp. 102106Google Scholar
Shibutani, D., Naoki, H., Okubo, H., Trans. Inst. Electr. Eng. Jpn. 121-B, 455 (2001)
Kebbabi, L., Beroual, A., IEEE Trans. Dielectr. Electr. Insul. 13, 565 (2006)CrossRef
Coulibaly, M.L., Caractérisation des décharges électriques se propageant aux interfaces gaz/solide – Relation entre propriétés des matériaux et dimension fractale, Ph.D. thesis, École Centrale de Lyon, France, 2009Google Scholar
Coulibaly, M.L., Beroual, A., Aitken, O., Investigation on Creeping Discharges Propagating over Insulators Immersed in Gases and Gas Mixtures under Lightning Impulse Voltage, in 2008 Int. Conf. on High Voltage Engineering and Application, Chongqing, China, 2008, p. 24Google Scholar
Kebbabi, L., Beroual, A., J. Phys D: Appl. Phys. 39, 177 (2006)CrossRef
Beroual, A., Kebbabi, L., IEEE Trans. Dielectr. Electr. Insul. 16, 1574 (2009)CrossRef