Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T17:08:13.219Z Has data issue: false hasContentIssue false

Interstitial sulfur photoluminescence in thermochemically synthesized CdS nanocrystals (NCs)

Published online by Cambridge University Press:  28 September 2011

M. Molaei
Affiliation:
Physics Department, Tarbiat Modares University, Tehran, Islamic Republic of Iran
E. Saievar Iranizad*
Affiliation:
Physics Department, Tarbiat Modares University, Tehran, Islamic Republic of Iran
M. Marandi
Affiliation:
Physics Department, Arak University, Arak, Islamic Republic of Iran
N. Taghavinia
Affiliation:
Physics Department, Sharif University of Technology, Tehran, Islamic Republic of Iran
*
Get access

Abstract

We have synthesized CdS NCs (NCs) by a thermochemical approach. CdSO4 and Na2S2O3 were used as the precursors and thioglycolic acid (TGA) was used as capping agent molecule. The structure and optical property of the NCs were characterized by means of XRD, TEM, UV-visible optical spectroscopy and photoluminescence (PL). XRD and TEM analyses demonstrated hexagonal phase CdS NCs with an average size of around 2 nm. Synthesized NCs exhibited a band gap of about 3.21 eV and showed a broad band emission from 400 to 750 nm centered at 503 nm. This broad band emission is related to surface states of CdS and our results showed that the emission peak can be attributed to the interstitial sulfur. The best attained photoluminescence quantum yield of the NCs was about 11%. At the same conditions the PL quantum yield of TGA capped NCs was about 20 times higher than that of TG capped NCs.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuwata-Gonokami, M., Takeda, K., Opt. Mater. 9, 12 (1998)CrossRef
Anikeeva, P.O., Halpert, J.E., Bawendi, M.G., Bulovi, V., Nano Lett. 7, 2196 (2007)CrossRef
Alivisato, A.P., Science 271, 933 (1996)
Coe, S., Woo, W.K., Bawendi, M., Bulovic, V., Nature 420, 800 (2002)CrossRef
Bruchez, M., Moronne, M., Gini, P., Weis, S., Alivisatos, A.P., Science 281, 2012 (1998)
Anikeeva, P.O., Halepert, J.E., Bawendi, M.G., Bulovic, V., Nano Lett. 9, 2532 (2009)CrossRef
Tan, Z., Zhang, F., Zhu, T., Xu, J.J., Wang, A., Dixon, J., Li, L., Zhang, Q., Mohney, S., Ruzyllo, J., Nano Lett. 7, 3803 (2007)CrossRef
Yang, H., Holloway, P.H., J. Phys. Chem. B 107, 9705 (2003)CrossRef
Bertoni, C., Gallardo, D., Dunn, S., Gaponik, N., Eychmuller, A., Appl. Phys. Lett. 90, 034107 (2007)CrossRef
Xuan, Y., Pan, D., Zhao, N., Ji, X., Ma, D., Nanotechnology 17, 4966 (2006)CrossRef
Kamat, P.V., J. Phys. Chem. C 112, 18737 (2008)CrossRef
Cheng, C., Xu, G., Zhang, H., Wang, H., Cao, J., Ji, H., Mater. Chem. Phys. 97, 448 (2006)CrossRef
Wu, J., Jiang, Y., Li, Q., Liu, X., Qian, Y., J. Cryst. Growth 235, 421 (2002)CrossRef
Sun, Q., Wang, Y.A., Li, L.S., Wang, D., Zhu, T., Xu, J., Ch. Yang, Y. Li, Nat. Photon. 1, 717 (2007)CrossRef
Tang, A.W., Teng, F., Gao, Y.H., Li, D., Zhao, S.L., Liang, C.J., Wang, Y.S., J. Lumin. 109, 649 (2007)CrossRef
Nizamoglu, S., Mutlugun, E., Akyuz, O., Perkgoz, N.K., Demir, H.V., Liebscher, L., Sapra, S., Gaponik, N., Eychmuller, A., New J. Phys. 10, 023026 (2008)CrossRef
Bol, A.A., Meijerink, A., Phys. Chem. Chem. Phys. 3, 2105 (2001)CrossRef
Cheah, K.W., Ling, L., Huang, X., Nanotechnology 13, 238 (2002)CrossRef
Chen, H.S., Wang, S.J.J., Lo, C.J., Chi, J.Y., Appl. Phys. Lett. 86, 905 (2005)
Lu, H.Y., Chu, S.Y., Tan, S.S., Jpn. J. Appl. Phys. Part 1, 5282 (2005)CrossRef
Bowers, M.J. II, McBridge, J.R., Rosenthal, S.J., J. Am. Chem. Soc. 127, 15378 (2005)CrossRef
Sapra, S., Mayilo, S., Klar, T.A., Rogach, A.L., Feldmann, J., Adv. Mater. 19, 569 (2007)CrossRef
Xiao, Q., Xiao, C., Appl. Surf. Sci. 255, 7111 (2009)CrossRef
Sedaghat, Z., Taghavinia, N., Marandi, M., Nanotechnology 17, 3812 (2006)CrossRef
Klong, H.P., Alexander, L.F., X-ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, New York, 1954)Google Scholar
Wuister, S.F., Meijerink, A., J. Lumin. 105, 35 (2003)CrossRef
Hasselbarth, A., Eychmuller, A., Waller, H., Chem. Phys. Lett. 203, 271 (1993)
Chen, H.M., Huang, X.F., Xu, L., Xu, J., Chen, K.J., Feng, D., Superlattices Microstruct. 27, 1 (2000)CrossRef
Chen, W., Xu, Y., Lin, Z., Wang, Z., Lin, L., Solid State Commun. 105, 129 (1998)CrossRef
Chestnoy, N., Harris, T.D., Hull, R., Brus, L.E., J. Phys. Chem. 90, 3393 (1986)CrossRef
Henglein, A., Chem. Rev. 89, 186 (1989)
Henglein, A., Top. Curr. Chem. 143, 115 (1988)
Murakoshi, K., Hosokawa, H., Saitoh, M., Wada, Y., Sakata, T., Mori, H., Satoh, M., Yanagida, S., J. Chem. Soc., Faraday Trans. 94, 579 (1998)CrossRef
Lippens, P.E., Lanno, M., Phys. Rev. B 39, 10935 (1989)CrossRef
Lawless, D., Kapoor, S., Meisel, D., J. Phys. Chem. 99, 10329 (1995)CrossRef
Zhang, H., Wang, D., Yang, B., Mohwald, H., J. Am. Chem. Soc. 128, 10171 (2006)CrossRef