Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T18:02:56.766Z Has data issue: false hasContentIssue false

Intensity noise measurement of strongly attenuated laser diode pulses in the time domain*

Published online by Cambridge University Press:  12 July 2006

Quyên Dinh Xuân
Affiliation:
Laboratoire SATIE, École Normale Supérieure de Cachan, CNRS UMR 8029, 61 avenue du Président Wilson, 94235 Cachan Cedex, France
R. Alléaume
Affiliation:
Laboratoire Traitement et Communication de l'Information, École Nationale Supérieure des Télécommunications, CNRS UMR 5141, 46 rue Barrault, 75634 Paris Cedex 13, France
Liantuan Xiao
Affiliation:
Laboratoire de Photonique Quantique et Moléculaire, École Normale Supérieure de Cachan, CNRS UMR 8537, 61 avenue du Président Wilson, 94235 Cachan Cedex, France
F. Treussart
Affiliation:
Laboratoire de Photonique Quantique et Moléculaire, École Normale Supérieure de Cachan, CNRS UMR 8537, 61 avenue du Président Wilson, 94235 Cachan Cedex, France
B. Journet*
Affiliation:
Laboratoire SATIE, École Normale Supérieure de Cachan, CNRS UMR 8029, 61 avenue du Président Wilson, 94235 Cachan Cedex, France
J.-F. Roch
Affiliation:
Laboratoire de Photonique Quantique et Moléculaire, École Normale Supérieure de Cachan, CNRS UMR 8537, 61 avenue du Président Wilson, 94235 Cachan Cedex, France
Get access

Abstract

Developing the ability to characterize photon statistics of light sources has been one of the important driving forces of Quantum Optics. Photon statistics is also a crucial parameter to evaluate of quantum key distribution security. As practical quantum cryptographic systems encode information on faint laser pulses, we present a simple method to measure and calibrate their intensity noise with respect to shotnoise reference. The technique is based on the record of photodetection timetags in the photon counting regime. Two different methods are considered to produce light pulse: first, direct pulsing of a laser diode driving current, second, chopping the CW laser beam emitted by a laser diode with an acousto-optical modulator. As predicted by basic Quantum Optics theory, levels of attenuation used in practical quantum key distribution systems lead in both cases to Poissonian photon number distribution in the generated light pulses.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29–30 janvier 2004.

References

C.H. Bennett, G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, Signal Processing, Bangalore, India, 1984, pp. 175–179
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H., Rev. Mod. Phys. 74, 145 (2002) CrossRef
New Journal of Physics, topical issue on Single Photon on Demand, edited by P. Grangier, B.C. Sanders, J. Vučković, Vol. 6, 2004
Beveratos, A., Brouri, R., Gacoin, T., Villing, A., Poizat, J.-P., Grangier, P., Phys. Rev. Lett. 89, 187901 (2002) CrossRef
Waks, E., Inoue, K., Santori, C., Fattal, D., Vučković, J., Solomon, G.S., Yamamoto, Y., Nature 420, 762 (2002) CrossRef
Alléaume, R., Treussart, F., Messin, G., Dumeige, Y., Roch, J.-F., Beveratos, A., Brouri-Tualle, R., Poizat, J.-P., Grangier, P., New J. Phys. 6, 92 (2004) CrossRef
See for instance Gobby, C., Yuan, Z., Shields, A., Appl. Phys. Lett. 84, 3762 (2004) and references therein CrossRef
Lütkenhaus, N., Phys. Rev. A 61, 052304 (2000) CrossRef
Zbinden, H., Gisin, N., Huttner, B., Muller, A., Tittel, W., J. Cryptol. 13, 207 (2000) CrossRef
Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C., Phys. Rev. Lett. 85, 1330 (2000) CrossRef
Félix, S., Gisin, N., Stefanov, A., Zbinden, H., J. Mod. Optic 48, 2009 (2001) CrossRef
Waks, E., Santori, C., Yamamoto, Y., Phys. Rev. A 66, 042315 (2002) CrossRef
Inoue, K., Waks, E., Yamamoto, Y., Phys. Rev. Lett. 89, 037902 (2002) CrossRef
Hwang, W.-Y., Phys. Rev. Lett. 91, 057901 (2003) CrossRef
Lo, H.-K., Ma, X., Chen, K., Phys. Rev. Lett. 94, 230504 (2005) CrossRef
C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, UK, 2005)
Brunel, C., Lounis, B., Tamarat, P., Orrit, M., Phys. Rev. Lett. 83, 2722 (1999) CrossRef
Lounis, B., Moerner, W.E., Nature 407, 491 (2000) CrossRef
Fleury, L., Segura, J.-M., Zumofen, G., Hecht, B., Wild, U.P., Phys. Rev. Lett. 84, 1148 (2000) CrossRef
Mandel, L., Opt. Lett. 4, 205 (1979) CrossRef
Short, R., Mandel, L., Phys. Rev. Lett. 51, 384 (1983) CrossRef
Treussart, F., Alléaume, R., Le Floc'h, V., Xiao, L.T., Courty, J.-M., Roch, J.-F., Phys. Rev. Lett. 89, 093601 (2002) CrossRef
Alléaume, R., Treussart, F., Courty, J.-M., Roch, J.-F., New J. Phys. 6, 85 (2004) CrossRef
Yuen, H.P., Chan, V.W.S., Opt. Lett. 8, 177 (1983) CrossRef
For a description of the low-noise photodetectors used in the experiment, see Roch, J.-F., Poizat, J.-Ph., Grangier, P., Phys. Rev. Lett. 71, 2006 (1993) CrossRef
Abate, J.A., Kimble, H.J., Mandel, L., Phys. Rev. A 14, 788 (1976) CrossRef
Ch. Kurtsiefer, P. Zarda, S. Mayer, H. Weinfurter, J. Mod. Optic 48, 2039 (2001) CrossRef