Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:56:30.629Z Has data issue: false hasContentIssue false

Influence of high-index GaAs substrates on the 2D electron density of δ-doped pHEMT with an additional InxGa1-xAs (x > 0.15) thin layer embedded in the channel

Published online by Cambridge University Press:  21 December 2004

L. Bouzaïene*
Affiliation:
Laboratoire de Physique des Semiconducteurs et des Composants Électroniques, Faculté des Sciences de Monastir, avenue de l'Environnement, 5000 Monastir, Tunisia
S. Rekaya
Affiliation:
Laboratoire de Physique des Semiconducteurs et des Composants Électroniques, Faculté des Sciences de Monastir, avenue de l'Environnement, 5000 Monastir, Tunisia
L. Sfaxi
Affiliation:
Laboratoire de Physique des Semiconducteurs et des Composants Électroniques, Faculté des Sciences de Monastir, avenue de l'Environnement, 5000 Monastir, Tunisia
H. Maaref
Affiliation:
Laboratoire de Physique des Semiconducteurs et des Composants Électroniques, Faculté des Sciences de Monastir, avenue de l'Environnement, 5000 Monastir, Tunisia
Get access

Abstract

In this paper, we report the theoretical predictions of a high-index GaAs substrate ((111)A and (311)A) on the subband structure and thereafter on the 2D electron density of Si δ-doped Al0.33Ga0.67As/In0.15Ga0.85As/GaAs pseudomorphic high electron mobility transistor (pHEMT) with an additional InxGa1-xAs (x > 0.15) thin layer embedded in the channel. We have seen that the electronic structures and the electron density are quite sensitive to the additional InxGa1-xAs (x > 0.15) layer thickness, indium composition and to their position in the channel. An optimal position of the additional InxGa1-xAs layer was found to be corresponding to the maximum of the first eigen envelope function for the different growth directions. We report that the optimised electron density is obtained in the structure grown on (111)A GaAs substrate. In this case the electron transfer is significantly higher than those grown on (311)A and (001) GaAs substrates respectively.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, S.W., Smith, P.M., Liu, S.J., Kopp, W.F., Rogers, T.J., IEEE Microw. Guided W. 5, 201 (1995) CrossRef
Brown, J.J. et al., IEEE Microw. Guided W. 6, 91 (1996) CrossRef
Grundbacher, R., Kettersonm, A.A., Kao, Y.C., Adesida, I., IEEE T. Electron Dev. 44, 2136 (1997) CrossRef
Somerville, M.H., Del Alamom, J.A., Saunier, P., IEEE T. Electron Dev. 45, 1883 (1998) CrossRef
Boring, P., Gil, B., Moore, K., Phys. Rev. Lett. 71, 1875 (1993) CrossRef
P.O. Vaccaro, M. Takahashi, K. Fujita, T. Watanabe, Jpn J. Appl. Phys. 34, Part 2, L13 (1995)
Toyoshima, H., Niwa, T., Yamazaki, J., Okamoto, A., Appl. Phys. Lett. 63, 821 (1993) CrossRef
Brandt, O. et al., Phys. Rev. B 48, 17599 (1993) CrossRef
P.O. Vaccaro, K. Tominaga, M. Hosoda, K. Fujita, T. Watanabe, Jpn J. Appl. Phys. 34, Part 1, 1362 (1995)
Konczewicz, L., Jouault, B., Contreras, S., Sadowski, M.L., Robert, J.L., Blanc, S., Fontaine, Ch., Phys. Stat. Sol. B 223, 507 (2001) 3.0.CO;2-U>CrossRef
Ruden, P., Dohler, G.H., Phys. Rev. B 27, 3538 (1983) CrossRef
Leuther, A., Föster, A., Lüth, H., Holzbercher, H., Breur, U., Semicond. Sci. Technol. 11, 766 (1996) CrossRef
Bouzaïene, L., Rekaya, S., Sghaeïr, H., Sfaxi, L., Maaref, H., Appl. Phys. A 80, 295 (2005) CrossRef
Bouzaïene, L., Sfaxi, L., Sghaeïr, H., Maaref, H., J. Appl. Phys. 85, 8223 (1999) CrossRef
Bouzaïene, L., Sfaxi, L., Maaref, H., Microelectron. J. 30, 705 (1999) CrossRef
Matthews, J.W., Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974)
A. Polimeni, A. Patane, M. Henini, L. Eaves, P.C. Main, S. Sanguinetti, M. Guzzi, J. Cryst. Growth 201/202, 276 (1999)