Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T14:56:46.387Z Has data issue: false hasContentIssue false

The influence of CdS quantum dots incorporation on the properties of CdO thin films

Published online by Cambridge University Press:  09 December 2013

Aytaç Gültekin*
Affiliation:
Department of Energy Systems Engineering, Faculty of Engineering, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
Gamze Karanfil
Affiliation:
Department of Energy Systems Engineering, Faculty of Engineering, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
Faruk Özel
Affiliation:
Department of Chemical Engineering, Selçuk University, Advanced Technology Research and Application Center, 42075 Konya, Turkey
Mahmut Kuş
Affiliation:
Department of Chemical Engineering, Selçuk University, Advanced Technology Research and Application Center, 42075 Konya, Turkey
Rıdvan Say
Affiliation:
Department of Chemistry, Faculty of Science, Anadolu University, 26470 Eskişehir, Turkey
Savaş Sönmezoğlu
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Karamanoğlu Mehmetbey University, 70100 Karaman, Turkey
*
Get access

Abstract

The aim of our work is to obtain nano-structured cadmium oxide (CdO) thin films by sol-gel spin coating method and to investigate the effects of cadmium sulfide quantum dots (CdS QDs) doping on the structural modification and surface morphology evolution. X-ray diffraction (XRD) results show that the intensities of the peaks of the crystalline phase increase with the increase in CdS QDs concentrations. From scanning electron microscopy (SEM) images, the distinct variations in the morphology of the thin films were also observed. In addition, the evolution of surface morphology, roughness and granularity has been characterized by atomic force microscopy (AFM). Moreover, we have performed the optical characteristics of the thin films such as transparency, energy band gap and Urbach tail. The optical band gap of the thin films increases from 2.23 to 2.51 eV with the increase in CdS QDs concentrations due to the Moss–Burstein effect. The enhanced values of the transparency, energy band gap and crystallity indicate that addition of CdS QDs can be used to modify the optical, structural and morphological properties of CdO thin films.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schaller, R.D., Klimov, V.I., Phys. Rev. Lett. 92, 186601 (2004)CrossRef
Choi, Y.J., Kim, Y.J., Lee, J.W., Lee, Y., Lim, Y.B., Chung, H.W., J. Nanosci. Nanotechnol. 12, 2160 (2012)CrossRef
Jung, K.O., J. Mater. Chem. 20, 8433 (2010)
Etgar, L., Zhang, W., Gabriel, S., Hickey, S.G., Nazeeruddin, M.K., Eychmüller, A., Liu, B., Grätzel, M., Adv. Mater. 24, 2202 (2012)CrossRef
Li, Z.B., Cai, W., Chen, X., J. Nanosci. Nanotechnol. 7, 2567 (2007)CrossRef
Rossetti, R., Ellison, J.L., Gibson, J.M., Brus, L.E., J. Chem. Phys. 80, 4464 (1984)CrossRef
Mognetti, B., Barberis, A., Marino, S., Carlo, F.D., Lysenko, V., Marty, O., Géloën, A., J. Nanosci. Nanotechnol. 10, 7971 (2010)CrossRef
Wang, X., Ma, X.L., Feng, X., Zheng, Y.F., J. Nanosci. Nanotechnol. 10, 7812 (2010)CrossRef
Medina-Gonzalez, Y., Xu, W.Z., Chen, B., Farhanghi, N., Charpentier, P.A., Nanotechnol. 22, 065603 (2011)CrossRef
Wang, X., Yan, X., Li, W., Sun, K., Adv. Mater. 24, 2742 (2012)CrossRef
Leevy, W.M., Lambert, T.N., Johnson, J.R., Morris, J., Smith, B.D., Chem. Commun. 20, 2331 (2008)CrossRef
Zhu, H., Sikora, U., Özcan, A., Analyst 137, 2541 (2012)CrossRef
Wang, Q., Fang, T., Liu, P., Min, X., Li, X., J. Coll. Interf. Sci. 363, 476 (2011)CrossRef
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Chem. Rev. 95, 69 (1995)CrossRef
Gorer, S., Hodes, G.J., Phys. Chem. B 98, 5338 (1994)CrossRef
Irene, B., Teresa, L.V., Roberto, G.J., Photochem. Photobiol. Chem. 30, 47 (2011)
Kangqiang, H., Li, C., Jieguan, D., Jianwen, X., J. Nanomater. 1, 2012 (2012)
Giuseppe, B., Maria, A.M., Lisa, G., Mario, C., Pier, P.P., Roberto, C., Tommaso, P., Biomaterials 31, 6555 (2010)
Haul, R., Just, D., J. Appl. Phys. 33, 487 (1962)CrossRef
Ristic, M., Popovic, S., Music, S., Mater. Lett. 58, 2494 (2004)CrossRef
Ortega, M., Santana, G., Morales, A., Solid State Electron. 44, 1765 (2000)CrossRef
Akın, S., Karanfil, G., Gültekin, A., Sönmezoğlu, S., J. Alloys Compd. 579, 272 (2013)CrossRef
Gujar, T.P., Shinde, V.R., Kim, W.Y., Jung, K.D., Lokhande, C.D., Joo, O.S., Appl. Surf. Sci. 254, 3813 (2008)CrossRef
Wang, X., Li, D., Guo, Y., Wang, X., Du, Y., Sun, R., Opt. Mater. 34, 646 (2012)CrossRef
Özütok, F., Ertürk, K., Bilgin, V., Acta. Phys. Pol. A 121, 221 (2012)CrossRef
Tauc, J., Mater. Res. Bull. 5, 721 (1970)CrossRef
Yutaka, E.V., Zhang, F., Jin, X.T., Taketoshi, M., Akira, M., J. Phys. Chem. B 109, 24441 (2005)
Shen, G.Z., Cho, J.H., Yoo, J.K., Yi, G.C., Lee, C., J. Phys. Chem. B 109, 5491 (2005)CrossRef
Zaera, R.T., Mora, I., Bisquert, J., J. Phys. Chem. C 112, 16318 (2008)CrossRef
Urbach, F., Phys. Rev. 92, 1324 (1953)CrossRef
Mott, N.F., Davis, E.A., Electronic processes in noncrystalline materials (Clarendon Press, Oxford, 1979)Google Scholar
Nagels, P., Brodsky, M.H., Electronic transport in amorphous semiconductors, amorphous semiconductors (Springer-Verlag, New York, 1979)Google Scholar
Pal, M., Tsujigami, Y., Yoshikado, A., Sakata, H., Phys. Status Solidi A 182, 727 (2000)3.0.CO;2-A>CrossRef
Wasim, S.M., Marin, G., Rincon, C., Sanchez, G.J., Appl. Phys. 84, 5823 (1998)CrossRef
Wasim, S.M., Marin, G., Rincon, C., Sanchez, G.J., Mora, A.E., J. Appl. Phys. 83, 3318 (1998)CrossRef
Gujar, T.P., Shinde, V.R., Kim, W.Y., Jung, K.D., Lokhande, C.D., Joo, O.S., Appl. Surf. Sci. 254, 3813 (2008)CrossRef
Cruz, J.S., Delgado, G.T., Perez, R.C., Sandoval, S.J., Thin Solid Films 493, 83 (2005)CrossRef
Cullity, B.D., Elements of X-ray diffraction (Addison-Wesley, London, 1978)Google Scholar