Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T17:02:32.239Z Has data issue: false hasContentIssue false

Influence of arc currents and axial magnetic fields strength on high current vacuum arc

Published online by Cambridge University Press:  09 April 2008

L. Wang*
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
S. Jia
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
L. Zhang
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
D. Yang
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
Z. Shi
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
Get access

Abstract

Based on numerical simulation technology, the influence of arc currents and axial magnetic fields (AMFs) strength on high current vacuum arc (HCVA) characteristics is studied and analyzed. Simulation results show that electron temperature, ion number density, axial current density, plasma potential, plasma pressure and heat flux density to anode in HCVA are all increased with the increase of arc currents. For very high current vacuum arc, current constriction near cathode side can be more significant than that of anode side. The increase of AMF strength can decrease the above parameters, and will control HCVA more efficiently. The simulation results of HCVA under different arc currents are also verified by experiments.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yanabu, S., Tsutsumi, T., Yokokura, K., Kaneko, E., IEEE Trans. Plasma Sci. 17, 717 (1989) CrossRef
Jia, S., Shi, Z., Wang, L., Wang, Z., Rong, M., IEEE Trans. Plasma Sci. 32, 2113 (2004) CrossRef
Chaly, A.M., Logatchev, A.A., Zabello, K.K., Shkol'nik, S.M., IEEE Trans. Plasma Sci. 31, 884 (2003) CrossRef
Boxman, R.L., J. App. Phys. 48, 2338 (1977) CrossRef
Keidar, M., Schulman, M.B., Talor, E.D., IEEE Trans. Plasma Sci. 32, 783 (2004) CrossRef
Schade, E., Shmelev, D.L., IEEE Trans. Plasma Sci. 31, 890 (2003) CrossRef
Wang, L., Jia, S., Shi, Z., Rong, M., J. Phys. D: Appl. Phys. 38, 1034 (2005) CrossRef
Wang, L., Jia, S., Shi, Z, Rong, M., J. App. Phys. 100, 113304 (2006) CrossRef
Wang, L., Jia, S., Zhang, L., Shi, Z, Yang, D., Francois, G., Jusselin, B., J. Phys. D: App. Phys. 40, 5953 (2007) CrossRef
Fluent6.1 Help Documents
E.D. Taylor, Proc. 49 IEEE Holm Conf. on Electrical Contacts, Washington, DC, USA (2003), pp. 70–75
W. Shang, E. Schade, H. Fink, et al. IEEE Trans. Plasma Sci. 31, 923 (2003)
Agarwal, M.S., Holmes, R., J. Phys. D: Appl. Phys. 17, 743 (1984) CrossRef
Chaly, A., Logachev, A., S. Shkol'nik. IEEE Trans. Plasma Sci. 27, 827 (1999) CrossRef
Z. Shi, The research of nonuniform axial magnetic fields on vacuum arc control mechanism, Ph.D. Dissertation, Xi'an Jiao tong University, 2004 (in Chinese)
S. Jia, Z. Shi, L. Wang, Z. Wang, M. Rong, IEEE Trans. Plasma Sci. 32, (2004) 2113
Chaly, A.M., Logatchev, A.A., Zabello, K.K., Shkol'nik, S.M., IEEE Trans. Plasma Sci. 31, 884 (2003) CrossRef
Homma, M., Somei, H., Niwa, Y., Yokokura, K., Ohshima, I., IEEE Trans. Plasma Sci. 27, 961 (1999) CrossRef